Files
location_library/LocationLib/src/com/TwentyCodes/android/location/GeoUtils.java

352 lines
12 KiB
Java

/**
* GeoUtils.java
* @author Google Inc.
* @author ricky barrette
* @date Oct 2, 2010
*
* Copyright 2008 Google Inc.
* Copyright 2012 Richard Barrette
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License
*/
package com.TwentyCodes.android.location;
import com.google.android.gms.maps.model.LatLng;
import java.text.DecimalFormat;
/**
* This class contains common tools for computing common geological problems
*
* @author ricky barrette
* @author Google Inc.
*/
public class GeoUtils {
public static final int EARTH_RADIUS_KM = 6371;
public static final double MILLION = 1000000;
/**
* computes the bearing of lat2/lon2 in relationship from lat1/lon1 in
* degrees East
*
* @param lat1
* source lat
* @param lon1
* source lon
* @param lat2
* destination lat
* @param lon2
* destination lon
* @return the bearing of lat2/lon2 in relationship from lat1/lon1 in
* degrees East of true north
* @author Google Inc.
*/
public static double bearing(final double lat1, final double lon1, final double lat2, final double lon2) {
final double lat1Rad = Math.toRadians(lat1);
final double lat2Rad = Math.toRadians(lat2);
final double deltaLonRad = Math.toRadians(lon2 - lon1);
final double y = Math.sin(deltaLonRad) * Math.cos(lat2Rad);
final double x = Math.cos(lat1Rad) * Math.sin(lat2Rad) - Math.sin(lat1Rad) * Math.cos(lat2Rad) * Math.cos(deltaLonRad);
return radToBearing(Math.atan2(y, x));
}
/**
* computes the bearing of lat2/lon2 in relationship from lat1/lon1 in
* degrees East of true north
*
* @param p1
* source LatLng
* @param p2
* destination LatLng
* @return the bearing of p2 in relationship from p1 in degrees East
* @author Google Inc.
*/
public static Double bearing(final LatLng p1, final LatLng p2) {
return bearing(p1.latitude, p1.longitude, p2.latitude, p2.longitude);
}
/**
* Calculates the bearing from the user location to the destination
* location, or returns the bearing for north if there is no destination.
* This method is awesome for making a compass point toward the destination
* rather than North.
*
* @param user
* location
* @param dest
* location
* @param bearing
* Degrees East from compass
* @return Degrees East of dest location
* @author ricky barrette
*/
public static float calculateBearing(final LatLng user, final LatLng dest, float bearing) {
if (user == null || dest == null)
return bearing;
final float heading = bearing(user, dest).floatValue();
bearing = 360 - heading + bearing;
if (bearing > 360)
return bearing - 360;
return bearing;
}
/**
* Calculates a LatLng x meters away of the LatLng supplied. The new
* LatLng shares the same latitude as LatLng point, this way they are on
* the same latitude arc.
*
* @param point
* central LatLng
* @param distance
* in meters from the LatLng
* @return LatLng that is x meters away from the LatLng supplied
* @author ricky barrette
*/
public static LatLng distanceFrom(final LatLng point, double distance) {
// convert meters into kilometers
distance = distance / 1000;
// convert lat and lon of LatLng to radians
final double lat1Rad = Math.toRadians(point.latitude);
final double lon1Rad = Math.toRadians(point.longitude);
/*
* kilometers =
* acos(sin(lat1Rad)sin(lat2Rad)+cos(lat1Rad)cos(lat2Rad)cos
* (lon2Rad-lon1Rad)6371
*
* we are solving this equation for lon2Rad
*
* lon2Rad = lon1Rad+acos(cos(meters/6371)sec(lat1Rad)sec(lat2Rad)-tan(lat1Rad)tan(lat2Rad))
*
* NOTE: sec(x) = 1/cos(x)
*
* NOTE: that lat2Rad is = lat1Rad because we want to keep the new
* LatLng on the same lat arc therefore i saw no need to create a new
* variable for lat2Rad, and simply inputed lat1Rad in place of lat2Rad
* in the equation
*
* NOTE: this equation has be tested in the field against another gps
* device, and the distanceKm() from google and has been proven to be
* damn close
*/
final double lon2Rad = lon1Rad + Math.acos(Math.cos(distance / 6371) * sec(lat1Rad) * sec(lat1Rad) - Math.tan(lat1Rad) * Math.tan(lat1Rad));
// return a LatLng that is x meters away from the LatLng supplied
return new LatLng(point.latitude, Math.toDegrees(lon2Rad));
}
public static LatLng distanceFrom(final LatLng point, final double distance, final float bearing) {
final double dist = distance / 6371;
final double brng = Math.toRadians(bearing);
final double lat1 = Math.toRadians(point.latitude);
final double lon1 = Math.toRadians(point.longitude);
final double lat2 = Math.asin(Math.sin(lat1) * Math.cos(dist) + Math.cos(lat1) * Math.sin(dist) * Math.cos(brng));
final double lon2 = lon1 + Math.atan2(Math.sin(brng) * Math.sin(dist) * Math.cos(lat1), Math.cos(dist) - Math.sin(lat1) * Math.sin(lat2));
// if (isNaN(lat2) || isNaN(lon2))
// return null;
return new LatLng(Math.toDegrees(lat2), Math.toDegrees(lon2));
}
/**
* compute secant
* @param theta angle in radians
* @return secant of theta.
*/
public static double sec ( double theta ){
return 1.0 / Math.cos( theta );
}
/**
* computes the distance between to lat1/lon1 and lat2/lon2 based on the
* curve of the earth
*
* @param lat1
* source lat
* @param lon1
* source lon
* @param lat2
* destination lat
* @param lon2
* destination lon
* @return the distance between to lat1/lon1 and lat2/lon2
* @author Google Inc.
*/
public static double distanceKm(final double lat1, final double lon1, final double lat2, final double lon2) {
final double lat1Rad = Math.toRadians(lat1);
final double lat2Rad = Math.toRadians(lat2);
final double deltaLonRad = Math.toRadians(lon2 - lon1);
return Math.acos(Math.sin(lat1Rad) * Math.sin(lat2Rad) + Math.cos(lat1Rad) * Math.cos(lat2Rad) * Math.cos(deltaLonRad)) * EARTH_RADIUS_KM;
}
/**
* computes the distance between to p1 and p2 based on the curve of the
* earth
*
* @param p1
* @param p2
* @return the distance between to p1 and p2
* @author Google Inc.
*/
public static double distanceKm(final LatLng p1, final LatLng p2) {
// if we are handed a null, return -1 so we don't break
if (p1 == null || p2 == null)
return -1;
return distanceKm(p1.latitude, p1.longitude, p2.latitude, p2.longitude);
}
/**
* Converts distance into a human readbale string
*
* @param distance
* in kilometers
* @param returnMetric
* true if metric, false for US
* @return string distance
* @author ricky barrette
*/
public static String distanceToString(double distance, final boolean returnMetric) {
final DecimalFormat threeDForm = new DecimalFormat("#.###");
final DecimalFormat twoDForm = new DecimalFormat("#.##");
if (returnMetric) {
if (distance < 1) {
distance = distance * 1000;
return twoDForm.format(distance) + " m";
}
return threeDForm.format(distance) + " Km";
}
distance = distance / 1.609344;
if (distance < 1) {
distance = distance * 5280;
return twoDForm.format(distance) + " ft";
}
return twoDForm.format(distance) + " mi";
}
/**
* a convince method for testing if 2 circles on the the surface of the
* earth intersect. we will use this method to test if the users accuracy
* circle intersects a marked locaton's radius if ( (accuracyCircleRadius +
* locationRadius) - fudgeFactor) >
* acos(sin(lat1Rad)sin(lat2Rad)+cos(lat1Rad
* )cos(lat2Rad)cos(lon2Rad-lon1Rad)6371
*
* @param userPoint
* @param accuracyRadius
* in KM
* @param locationPoint
* @param locationRadius
* in KM
* @param fudgeFactor
* how many KM the circles have to intersect
* @return true if the circles intersect
* @author ricky barrette
*/
public static boolean isIntersecting(final LatLng userPoint, final float accuracyRadius, final LatLng locationPoint, final float locationRadius,
final float fudgeFactor) {
if (accuracyRadius + locationRadius - fudgeFactor > distanceKm(locationPoint, userPoint))
return true;
return false;
}
// /**
// * determines when the specified point is off the map
// *
// * @param point
// * @return true is the point is off the map
// * @author ricky barrette
// */
// public static boolean isPointOffMap(final GoogleMap map, final LatLng point) {
//
// VisibleRegion vr = map.getProjection().getVisibleRegion();
// double left = vr.latLngBounds.southwest.longitude;
// double top = vr.latLngBounds.northeast.latitude;
// double right = vr.latLngBounds.northeast.longitude;
// double bottom = vr.latLngBounds.southwest.latitude;
//
// if (map == null)
// return false;
// if (point == null)
// return false;
// final LatLng center = map.getCameraPosition().target;
// final double distance = GeoUtils.distanceKm(center, point);
// final double distanceLat = GeoUtils.distanceKm(center, new LatLng(center.latitude + map.getLatitudeSpan() / 2, center.longitude));
// final double distanceLon = GeoUtils.distanceKm(center, new LatLng(center.latitude, center.longitude + map.getLongitudeSpan() / 2));
// if (distance > distanceLat || distance > distanceLon)
// return true;
// return false;
//
// return map.getProjection().toScreenLocation()
// }
//
// /**
// * computes a LatLng the is the central LatLng between p1 and p1
// *
// * @param p1
// * first LatLng
// * @param p2
// * second LatLng
// * @return a MidPoint object
// * @author ricky barrette
// */
// public static MidPoint midpoint(final LatLng p1, final LatLng p2) {
//// double minLatitude = +81 * 1E6;
//// double maxLatitude = -81 * 1E6;
//// double minLongitude = +181 * 1E6;
//// double maxLongitude = -181 * 1E6;
//// final List<Point> mPoints = new ArrayList<Point>();
//// if (p1.latitude != 0 && p1.longitude != 0) {
//// minLatitude = minLatitude > p1.latitude ? p1.latitude : minLatitude;
//// maxLatitude = maxLatitude < p1.latitude ? p1.latitude : maxLatitude;
//// minLongitude = minLongitude > p1.longitude ? p1.longitude : minLongitude;
//// maxLongitude = maxLongitude < p1.longitude ? p1.longitude : maxLongitude;
//// mPoints.add(new Point(p1.latitude, p1.longitude));
//// }
////
//// if (p2.latitude != 0 && p2.longitude != 0) {
//// minLatitude = minLatitude > p2.latitude ? p2.latitude : minLatitude;
//// maxLatitude = maxLatitude < p2.latitude ? p2.latitude : maxLatitude;
//// minLongitude = minLongitude > p2.longitude ? p2.longitude : minLongitude;
//// maxLongitude = maxLongitude < p2.longitude ? p2.longitude : maxLongitude;
//// mPoints.add(new Point(p2.latitude, p2.longitude));
//// }
//// return new MidPoint(new LatLng((maxLatitude + minLatitude) / 2, (maxLongitude + minLongitude) / 2), minLatitude, minLongitude, maxLatitude, maxLongitude);
// LatLngBounds.Builder latLngBounds = new LatLngBounds.Builder();
// latLngBounds.include(p1);
// latLngBounds.include(p2);
// return new MidPoint(latLngBounds.build().getCenter()
// }
/**
* converts radians to bearing
*
* @param rad
* @return bearing
* @author Google Inc.
*/
public static double radToBearing(final double rad) {
return (Math.toDegrees(rad) + 360) % 360;
}
}