Files
location_library/LocationLib/src/com/TwentyCodes/android/location/GeoUtils.java
Ricky Barrette 449c97a384 Added method GeoUtils.distanceToString()
I moved this method from FMC

Change-Id: I61ff03c3e69a32cabb1999cb858b139990f2f835
Signed-off-by: Ricky Barrette <rickbarrette@gmail.com>
2012-03-05 10:49:45 -05:00

283 lines
11 KiB
Java

/**
* @author Twenty Codes, LLC
* @author Google Inc.
* @author ricky barrette
* @date Oct 2, 2010
*
* Some Code here is Copyright (C) 2008 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.TwentyCodes.android.location;
import java.text.DecimalFormat;
import java.util.ArrayList;
import java.util.List;
import android.graphics.Point;
import com.google.android.maps.GeoPoint;
import com.google.android.maps.MapView;
/**
* This class contains common tools for computing common geological problems
* @author ricky barrette
* @author Google Inc.
*/
public class GeoUtils {
public static final int EARTH_RADIUS_KM = 6371;
public static final double MILLION = 1000000;
/**
* Calculates the bearing from the user location to the destination location, or returns the bearing for north if there is no destination.
* This method is awesome for make a compass point toward the destination rather than North.
* @param user location
* @param dest location
* @param bearing Degrees East from compass
* @return Degrees East of dest location
* @author ricky barrette
*/
public static float calculateBearing(GeoPoint user, GeoPoint dest, float bearing) {
if( (user == null) || (dest == null) )
return bearing;
float heading = bearing(user, dest).floatValue();
bearing = (360 - heading) + bearing;
if (bearing > 360)
return bearing - 360;
return bearing;
}
/**
* computes the bearing of lat2/lon2 in relationship from lat1/lon1 in degrees East
* @param lat1 source lat
* @param lon1 source lon
* @param lat2 destination lat
* @param lon2 destination lon
* @return the bearing of lat2/lon2 in relationship from lat1/lon1 in degrees East of true north
* @author Google Inc.
*/
public static double bearing(double lat1, double lon1, double lat2, double lon2) {
double lat1Rad = Math.toRadians(lat1);
double lat2Rad = Math.toRadians(lat2);
double deltaLonRad = Math.toRadians(lon2 - lon1);
double y = Math.sin(deltaLonRad) * Math.cos(lat2Rad);
double x = Math.cos(lat1Rad) * Math.sin(lat2Rad) - Math.sin(lat1Rad) * Math.cos(lat2Rad) * Math.cos(deltaLonRad);
return radToBearing(Math.atan2(y, x));
}
/**
* computes the bearing of lat2/lon2 in relationship from lat1/lon1 in degrees East of true north
* @param p1 source geopoint
* @param p2 destination geopoint
* @return the bearing of p2 in relationship from p1 in degrees East
* @author Google Inc.
*/
public static Double bearing(GeoPoint p1, GeoPoint p2) {
double lat1 = p1.getLatitudeE6() / MILLION;
double lon1 = p1.getLongitudeE6() / MILLION;
double lat2 = p2.getLatitudeE6() / MILLION;
double lon2 = p2.getLongitudeE6() / MILLION;
return bearing(lat1, lon1, lat2, lon2);
}
/**
* Calculates a geopoint x meters away of the geopoint supplied. The new geopoint
* shares the same latitude as geopoint point, this way they are on the same latitude arc.
*
* @param point central geopoint
* @param distance in meters from the geopoint
* @return geopoint that is x meters away from the geopoint supplied
* @author ricky barrette
*/
public static GeoPoint distanceFrom(GeoPoint point, double distance){
//convert meters into kilometers
distance = distance / 1000;
// convert lat and lon of geopoint to radians
double lat1Rad = Math.toRadians((point.getLatitudeE6() / 1e6));
double lon1Rad = Math.toRadians((point.getLongitudeE6() / 1e6));
/*
* kilometers = acos(sin(lat1Rad)sin(lat2Rad)+cos(lat1Rad)cos(lat2Rad)cos(lon2Rad-lon1Rad)6371
*
* we are solving this equation for lon2Rad
*
* lon2Rad = lon1Rad+acos(cos(meters/6371)sec(lat1Rad)sec(lat2Rad)-tan(lat1Rad)tan(lat2Rad))
*
* NOTE: sec(x) = 1/cos(x)
*
* NOTE: that lat2Rad is = lat1Rad because we want to keep the new geopoint on the same lat arc
* therefore i saw no need to create a new variable for lat2Rad,
* and simply inputed lat1Rad in place of lat2Rad in the equation
*
* NOTE: this equation has be tested in the field against another gps device, and the distanceKm() from google
* and has been proven to be damn close
*/
double lon2Rad = lon1Rad + Math.acos( Math.cos((distance/6371)) * (1 / Math.cos(lat1Rad))
* (1 / Math.cos(lat1Rad)) - Math.tan(lat1Rad) * Math.tan(lat1Rad));
//return a geopoint that is x meters away from the geopoint supplied
return new GeoPoint(point.getLatitudeE6(), (int) (Math.toDegrees(lon2Rad) * 1e6));
}
/**
* computes the distance between to lat1/lon1 and lat2/lon2 based on the curve of the earth
* @param lat1 source lat
* @param lon1 source lon
* @param lat2 destination lat
* @param lon2 destination lon
* @return the distance between to lat1/lon1 and lat2/lon2
* @author Google Inc.
*/
public static double distanceKm(double lat1, double lon1, double lat2, double lon2) {
double lat1Rad = Math.toRadians(lat1);
double lat2Rad = Math.toRadians(lat2);
double deltaLonRad = Math.toRadians(lon2 - lon1);
return Math.acos(Math.sin(lat1Rad) * Math.sin(lat2Rad) + Math.cos(lat1Rad) * Math.cos(lat2Rad) * Math.cos(deltaLonRad)) * EARTH_RADIUS_KM;
}
/**
* Converts distance into a human readbale string
* @param distance in kilometers
* @param returnMetric true if metric, false for US
* @return string distance
* @author ricky barrette
*/
public static String distanceToString(double distance, boolean returnMetric) {
DecimalFormat threeDForm = new DecimalFormat("#.###");
DecimalFormat twoDForm = new DecimalFormat("#.##");
if (returnMetric) {
if (distance < 1) {
distance = distance * 1000;
return twoDForm.format(distance) + " m";
}
return threeDForm.format(distance) + " Km";
}
distance = distance / 1.609344;
if (distance < 1) {
distance = distance * 5280;
return twoDForm.format(distance) + " ft";
}
return twoDForm.format(distance) + " mi";
}
/**
* a convince method for testing if 2 circles on the the surface of the earth intersect.
* we will use this method to test if the users accuracy circle intersects a marked locaton's radius
* if ( (accuracyCircleRadius + locationRadius) - fudgeFactor) > acos(sin(lat1Rad)sin(lat2Rad)+cos(lat1Rad)cos(lat2Rad)cos(lon2Rad-lon1Rad)6371
* @param userPoint
* @param accuracyRadius in KM
* @param locationPoint
* @param locationRadius in KM
* @param fudgeFactor how many KM the circles have to intersect
* @return true if the circles intersect
* @author ricky barrette
*/
public static boolean isIntersecting(GeoPoint userPoint, float accuracyRadius, GeoPoint locationPoint, float locationRadius, float fudgeFactor){
if(((accuracyRadius + locationRadius) - fudgeFactor) > distanceKm(locationPoint, userPoint))
return true;
return false;
}
/**
* computes the distance between to p1 and p2 based on the curve of the earth
* @param p1
* @param p2
* @return the distance between to p1 and p2
* @author Google Inc.
*/
public static double distanceKm(GeoPoint p1, GeoPoint p2) {
//if we are handed a null, return -1 so we don't break
if(p1 == null || p2 == null)
return -1;
double lat1 = p1.getLatitudeE6() / MILLION;
double lon1 = p1.getLongitudeE6() / MILLION;
double lat2 = p2.getLatitudeE6() / MILLION;
double lon2 = p2.getLongitudeE6() / MILLION;
return distanceKm(lat1, lon1, lat2, lon2);
}
/**
* determines when the specified point is off the map
* @param point
* @return true is the point is off the map
* @author ricky barrette
*/
public static boolean isPointOffMap(MapView map , GeoPoint point){
if(map == null)
return false;
if (point == null)
return false;
GeoPoint center = map.getMapCenter();
double distance = GeoUtils.distanceKm(center, point);
double distanceLat = GeoUtils.distanceKm(center, new GeoPoint((center.getLatitudeE6() + (int) (map.getLatitudeSpan() / 2)), center.getLongitudeE6()));
double distanceLon = GeoUtils.distanceKm(center, new GeoPoint(center.getLatitudeE6(), (center.getLongitudeE6() + (int) (map.getLongitudeSpan() / 2))));
if (distance > distanceLat || distance > distanceLon){
return true;
}
return false;
}
/**
* computes a geopoint the is the central geopoint between p1 and p1
* @param p1 first geopoint
* @param p2 second geopoint
* @return a MidPoint object
* @author ricky barrette
*/
public static MidPoint midPoint(GeoPoint p1, GeoPoint p2) {
int minLatitude = (int)(+81 * 1E6);
int maxLatitude = (int)(-81 * 1E6);
int minLongitude = (int)(+181 * 1E6);
int maxLongitude = (int)(-181 * 1E6);
List<Point> mPoints = new ArrayList<Point>();
int latitude = p1.getLatitudeE6();
int longitude = p1.getLongitudeE6();
if (latitude != 0 && longitude !=0) {
minLatitude = (minLatitude > latitude) ? latitude : minLatitude;
maxLatitude = (maxLatitude < latitude) ? latitude : maxLatitude;
minLongitude = (minLongitude > longitude) ? longitude : minLongitude;
maxLongitude = (maxLongitude < longitude) ? longitude : maxLongitude;
mPoints.add(new Point(latitude, longitude));
}
latitude = p2.getLatitudeE6();
longitude = p2.getLongitudeE6();
if (latitude != 0 && longitude !=0) {
minLatitude = (minLatitude > latitude) ? latitude : minLatitude;
maxLatitude = (maxLatitude < latitude) ? latitude : maxLatitude;
minLongitude = (minLongitude > longitude) ? longitude : minLongitude;
maxLongitude = (maxLongitude < longitude) ? longitude : maxLongitude;
mPoints.add(new Point(latitude, longitude));
}
return new MidPoint(new GeoPoint((maxLatitude + minLatitude)/2, (maxLongitude + minLongitude)/2 ), minLatitude, minLongitude, maxLatitude, maxLongitude);
}
/**
* converts radians to bearing
* @param rad
* @return bearing
* @author Google Inc.
*/
public static double radToBearing(double rad) {
return (Math.toDegrees(rad) + 360) % 360;
}
}