/** * @author Twenty Codes, LLC * @author Google Inc. * @author ricky barrette * @date Oct 2, 2010 * * Some Code here is Copyright (C) 2008 Google Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.TwentyCodes.android.location; import java.text.DecimalFormat; import java.util.ArrayList; import java.util.List; import android.graphics.Point; import com.google.android.maps.GeoPoint; import com.google.android.maps.MapView; /** * This class contains common tools for computing common geological problems * * @author ricky barrette * @author Google Inc. */ public class GeoUtils { public static final int EARTH_RADIUS_KM = 6371; public static final double MILLION = 1000000; /** * computes the bearing of lat2/lon2 in relationship from lat1/lon1 in * degrees East * * @param lat1 * source lat * @param lon1 * source lon * @param lat2 * destination lat * @param lon2 * destination lon * @return the bearing of lat2/lon2 in relationship from lat1/lon1 in * degrees East of true north * @author Google Inc. */ public static double bearing(final double lat1, final double lon1, final double lat2, final double lon2) { final double lat1Rad = Math.toRadians(lat1); final double lat2Rad = Math.toRadians(lat2); final double deltaLonRad = Math.toRadians(lon2 - lon1); final double y = Math.sin(deltaLonRad) * Math.cos(lat2Rad); final double x = Math.cos(lat1Rad) * Math.sin(lat2Rad) - Math.sin(lat1Rad) * Math.cos(lat2Rad) * Math.cos(deltaLonRad); return radToBearing(Math.atan2(y, x)); } /** * computes the bearing of lat2/lon2 in relationship from lat1/lon1 in * degrees East of true north * * @param p1 * source geopoint * @param p2 * destination geopoint * @return the bearing of p2 in relationship from p1 in degrees East * @author Google Inc. */ public static Double bearing(final GeoPoint p1, final GeoPoint p2) { final double lat1 = p1.getLatitudeE6() / MILLION; final double lon1 = p1.getLongitudeE6() / MILLION; final double lat2 = p2.getLatitudeE6() / MILLION; final double lon2 = p2.getLongitudeE6() / MILLION; return bearing(lat1, lon1, lat2, lon2); } /** * Calculates the bearing from the user location to the destination * location, or returns the bearing for north if there is no destination. * This method is awesome for making a compass point toward the destination * rather than North. * * @param user * location * @param dest * location * @param bearing * Degrees East from compass * @return Degrees East of dest location * @author ricky barrette */ public static float calculateBearing(final GeoPoint user, final GeoPoint dest, float bearing) { if (user == null || dest == null) return bearing; final float heading = bearing(user, dest).floatValue(); bearing = 360 - heading + bearing; if (bearing > 360) return bearing - 360; return bearing; } /** * Calculates a geopoint x meters away of the geopoint supplied. The new * geopoint shares the same latitude as geopoint point, this way they are on * the same latitude arc. * * @param point * central geopoint * @param distance * in meters from the geopoint * @return geopoint that is x meters away from the geopoint supplied * @author ricky barrette */ public static GeoPoint distanceFrom(final GeoPoint point, double distance) { // convert meters into kilometers distance = distance / 1000; // convert lat and lon of geopoint to radians final double lat1Rad = Math.toRadians(point.getLatitudeE6() / 1e6); final double lon1Rad = Math.toRadians(point.getLongitudeE6() / 1e6); /* * kilometers = * acos(sin(lat1Rad)sin(lat2Rad)+cos(lat1Rad)cos(lat2Rad)cos * (lon2Rad-lon1Rad)6371 * * we are solving this equation for lon2Rad * * lon2Rad = * lon1Rad+acos(cos(meters/6371)sec(lat1Rad)sec(lat2Rad)-tan(lat1Rad * )tan(lat2Rad)) * * NOTE: sec(x) = 1/cos(x) * * NOTE: that lat2Rad is = lat1Rad because we want to keep the new * geopoint on the same lat arc therefore i saw no need to create a new * variable for lat2Rad, and simply inputed lat1Rad in place of lat2Rad * in the equation * * NOTE: this equation has be tested in the field against another gps * device, and the distanceKm() from google and has been proven to be * damn close */ final double lon2Rad = lon1Rad + Math.acos(Math.cos(distance / 6371) * (1 / Math.cos(lat1Rad)) * (1 / Math.cos(lat1Rad)) - Math.tan(lat1Rad) * Math.tan(lat1Rad)); // return a geopoint that is x meters away from the geopoint supplied return new GeoPoint(point.getLatitudeE6(), (int) (Math.toDegrees(lon2Rad) * 1e6)); } /** * computes the distance between to lat1/lon1 and lat2/lon2 based on the * curve of the earth * * @param lat1 * source lat * @param lon1 * source lon * @param lat2 * destination lat * @param lon2 * destination lon * @return the distance between to lat1/lon1 and lat2/lon2 * @author Google Inc. */ public static double distanceKm(final double lat1, final double lon1, final double lat2, final double lon2) { final double lat1Rad = Math.toRadians(lat1); final double lat2Rad = Math.toRadians(lat2); final double deltaLonRad = Math.toRadians(lon2 - lon1); return Math.acos(Math.sin(lat1Rad) * Math.sin(lat2Rad) + Math.cos(lat1Rad) * Math.cos(lat2Rad) * Math.cos(deltaLonRad)) * EARTH_RADIUS_KM; } /** * computes the distance between to p1 and p2 based on the curve of the * earth * * @param p1 * @param p2 * @return the distance between to p1 and p2 * @author Google Inc. */ public static double distanceKm(final GeoPoint p1, final GeoPoint p2) { // if we are handed a null, return -1 so we don't break if (p1 == null || p2 == null) return -1; final double lat1 = p1.getLatitudeE6() / MILLION; final double lon1 = p1.getLongitudeE6() / MILLION; final double lat2 = p2.getLatitudeE6() / MILLION; final double lon2 = p2.getLongitudeE6() / MILLION; return distanceKm(lat1, lon1, lat2, lon2); } /** * Converts distance into a human readbale string * * @param distance * in kilometers * @param returnMetric * true if metric, false for US * @return string distance * @author ricky barrette */ public static String distanceToString(double distance, final boolean returnMetric) { final DecimalFormat threeDForm = new DecimalFormat("#.###"); final DecimalFormat twoDForm = new DecimalFormat("#.##"); if (returnMetric) { if (distance < 1) { distance = distance * 1000; return twoDForm.format(distance) + " m"; } return threeDForm.format(distance) + " Km"; } distance = distance / 1.609344; if (distance < 1) { distance = distance * 5280; return twoDForm.format(distance) + " ft"; } return twoDForm.format(distance) + " mi"; } /** * a convince method for testing if 2 circles on the the surface of the * earth intersect. we will use this method to test if the users accuracy * circle intersects a marked locaton's radius if ( (accuracyCircleRadius + * locationRadius) - fudgeFactor) > * acos(sin(lat1Rad)sin(lat2Rad)+cos(lat1Rad * )cos(lat2Rad)cos(lon2Rad-lon1Rad)6371 * * @param userPoint * @param accuracyRadius * in KM * @param locationPoint * @param locationRadius * in KM * @param fudgeFactor * how many KM the circles have to intersect * @return true if the circles intersect * @author ricky barrette */ public static boolean isIntersecting(final GeoPoint userPoint, final float accuracyRadius, final GeoPoint locationPoint, final float locationRadius, final float fudgeFactor) { if (accuracyRadius + locationRadius - fudgeFactor > distanceKm(locationPoint, userPoint)) return true; return false; } /** * determines when the specified point is off the map * * @param point * @return true is the point is off the map * @author ricky barrette */ public static boolean isPointOffMap(final MapView map, final GeoPoint point) { if (map == null) return false; if (point == null) return false; final GeoPoint center = map.getMapCenter(); final double distance = GeoUtils.distanceKm(center, point); final double distanceLat = GeoUtils.distanceKm(center, new GeoPoint(center.getLatitudeE6() + map.getLatitudeSpan() / 2, center.getLongitudeE6())); final double distanceLon = GeoUtils.distanceKm(center, new GeoPoint(center.getLatitudeE6(), center.getLongitudeE6() + map.getLongitudeSpan() / 2)); if (distance > distanceLat || distance > distanceLon) return true; return false; } /** * computes a geopoint the is the central geopoint between p1 and p1 * * @param p1 * first geopoint * @param p2 * second geopoint * @return a MidPoint object * @author ricky barrette */ public static MidPoint midPoint(final GeoPoint p1, final GeoPoint p2) { int minLatitude = (int) (+81 * 1E6); int maxLatitude = (int) (-81 * 1E6); int minLongitude = (int) (+181 * 1E6); int maxLongitude = (int) (-181 * 1E6); final List mPoints = new ArrayList(); int latitude = p1.getLatitudeE6(); int longitude = p1.getLongitudeE6(); if (latitude != 0 && longitude != 0) { minLatitude = minLatitude > latitude ? latitude : minLatitude; maxLatitude = maxLatitude < latitude ? latitude : maxLatitude; minLongitude = minLongitude > longitude ? longitude : minLongitude; maxLongitude = maxLongitude < longitude ? longitude : maxLongitude; mPoints.add(new Point(latitude, longitude)); } latitude = p2.getLatitudeE6(); longitude = p2.getLongitudeE6(); if (latitude != 0 && longitude != 0) { minLatitude = minLatitude > latitude ? latitude : minLatitude; maxLatitude = maxLatitude < latitude ? latitude : maxLatitude; minLongitude = minLongitude > longitude ? longitude : minLongitude; maxLongitude = maxLongitude < longitude ? longitude : maxLongitude; mPoints.add(new Point(latitude, longitude)); } return new MidPoint(new GeoPoint((maxLatitude + minLatitude) / 2, (maxLongitude + minLongitude) / 2), minLatitude, minLongitude, maxLatitude, maxLongitude); } /** * converts radians to bearing * * @param rad * @return bearing * @author Google Inc. */ public static double radToBearing(final double rad) { return (Math.toDegrees(rad) + 360) % 360; } }