initial commit. includes PhsyicsBox2dExtension
This commit is contained in:
52
AndEngine/jni/Box2D/Dynamics/Contacts/b2CircleContact.cpp
Normal file
52
AndEngine/jni/Box2D/Dynamics/Contacts/b2CircleContact.cpp
Normal file
@@ -0,0 +1,52 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#include "Box2D/Dynamics/Contacts/b2CircleContact.h"
|
||||
#include "Box2D/Dynamics/b2Body.h"
|
||||
#include "Box2D/Dynamics/b2Fixture.h"
|
||||
#include "Box2D/Dynamics/b2WorldCallbacks.h"
|
||||
#include "Box2D/Common/b2BlockAllocator.h"
|
||||
#include "Box2D/Collision/b2TimeOfImpact.h"
|
||||
|
||||
#include <new>
|
||||
|
||||
b2Contact* b2CircleContact::Create(b2Fixture* fixtureA, b2Fixture* fixtureB, b2BlockAllocator* allocator)
|
||||
{
|
||||
void* mem = allocator->Allocate(sizeof(b2CircleContact));
|
||||
return new (mem) b2CircleContact(fixtureA, fixtureB);
|
||||
}
|
||||
|
||||
void b2CircleContact::Destroy(b2Contact* contact, b2BlockAllocator* allocator)
|
||||
{
|
||||
((b2CircleContact*)contact)->~b2CircleContact();
|
||||
allocator->Free(contact, sizeof(b2CircleContact));
|
||||
}
|
||||
|
||||
b2CircleContact::b2CircleContact(b2Fixture* fixtureA, b2Fixture* fixtureB)
|
||||
: b2Contact(fixtureA, fixtureB)
|
||||
{
|
||||
b2Assert(m_fixtureA->GetType() == b2Shape::e_circle);
|
||||
b2Assert(m_fixtureB->GetType() == b2Shape::e_circle);
|
||||
}
|
||||
|
||||
void b2CircleContact::Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB)
|
||||
{
|
||||
b2CollideCircles(manifold,
|
||||
(b2CircleShape*)m_fixtureA->GetShape(), xfA,
|
||||
(b2CircleShape*)m_fixtureB->GetShape(), xfB);
|
||||
}
|
||||
38
AndEngine/jni/Box2D/Dynamics/Contacts/b2CircleContact.h
Normal file
38
AndEngine/jni/Box2D/Dynamics/Contacts/b2CircleContact.h
Normal file
@@ -0,0 +1,38 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef B2_CIRCLE_CONTACT_H
|
||||
#define B2_CIRCLE_CONTACT_H
|
||||
|
||||
#include "Box2D/Dynamics/Contacts/b2Contact.h"
|
||||
|
||||
class b2BlockAllocator;
|
||||
|
||||
class b2CircleContact : public b2Contact
|
||||
{
|
||||
public:
|
||||
static b2Contact* Create(b2Fixture* fixtureA, b2Fixture* fixtureB, b2BlockAllocator* allocator);
|
||||
static void Destroy(b2Contact* contact, b2BlockAllocator* allocator);
|
||||
|
||||
b2CircleContact(b2Fixture* fixtureA, b2Fixture* fixtureB);
|
||||
~b2CircleContact() {}
|
||||
|
||||
void Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB);
|
||||
};
|
||||
|
||||
#endif
|
||||
226
AndEngine/jni/Box2D/Dynamics/Contacts/b2Contact.cpp
Normal file
226
AndEngine/jni/Box2D/Dynamics/Contacts/b2Contact.cpp
Normal file
@@ -0,0 +1,226 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#include "Box2D/Dynamics/Contacts/b2Contact.h"
|
||||
#include "Box2D/Dynamics/Contacts/b2CircleContact.h"
|
||||
#include "Box2D/Dynamics/Contacts/b2PolygonAndCircleContact.h"
|
||||
#include "Box2D/Dynamics/Contacts/b2PolygonContact.h"
|
||||
#include "Box2D/Dynamics/Contacts/b2ContactSolver.h"
|
||||
|
||||
#include "Box2D/Collision/b2Collision.h"
|
||||
#include "Box2D/Collision/b2TimeOfImpact.h"
|
||||
#include "Box2D/Collision/Shapes/b2Shape.h"
|
||||
#include "Box2D/Common/b2BlockAllocator.h"
|
||||
#include "Box2D/Dynamics/b2Body.h"
|
||||
#include "Box2D/Dynamics/b2Fixture.h"
|
||||
#include "Box2D/Dynamics/b2World.h"
|
||||
|
||||
b2ContactRegister b2Contact::s_registers[b2Shape::e_typeCount][b2Shape::e_typeCount];
|
||||
bool b2Contact::s_initialized = false;
|
||||
|
||||
void b2Contact::InitializeRegisters()
|
||||
{
|
||||
AddType(b2CircleContact::Create, b2CircleContact::Destroy, b2Shape::e_circle, b2Shape::e_circle);
|
||||
AddType(b2PolygonAndCircleContact::Create, b2PolygonAndCircleContact::Destroy, b2Shape::e_polygon, b2Shape::e_circle);
|
||||
AddType(b2PolygonContact::Create, b2PolygonContact::Destroy, b2Shape::e_polygon, b2Shape::e_polygon);
|
||||
}
|
||||
|
||||
void b2Contact::AddType(b2ContactCreateFcn* createFcn, b2ContactDestroyFcn* destoryFcn,
|
||||
b2Shape::Type type1, b2Shape::Type type2)
|
||||
{
|
||||
b2Assert(b2Shape::e_unknown < type1 && type1 < b2Shape::e_typeCount);
|
||||
b2Assert(b2Shape::e_unknown < type2 && type2 < b2Shape::e_typeCount);
|
||||
|
||||
s_registers[type1][type2].createFcn = createFcn;
|
||||
s_registers[type1][type2].destroyFcn = destoryFcn;
|
||||
s_registers[type1][type2].primary = true;
|
||||
|
||||
if (type1 != type2)
|
||||
{
|
||||
s_registers[type2][type1].createFcn = createFcn;
|
||||
s_registers[type2][type1].destroyFcn = destoryFcn;
|
||||
s_registers[type2][type1].primary = false;
|
||||
}
|
||||
}
|
||||
|
||||
b2Contact* b2Contact::Create(b2Fixture* fixtureA, b2Fixture* fixtureB, b2BlockAllocator* allocator)
|
||||
{
|
||||
if (s_initialized == false)
|
||||
{
|
||||
InitializeRegisters();
|
||||
s_initialized = true;
|
||||
}
|
||||
|
||||
b2Shape::Type type1 = fixtureA->GetType();
|
||||
b2Shape::Type type2 = fixtureB->GetType();
|
||||
|
||||
b2Assert(b2Shape::e_unknown < type1 && type1 < b2Shape::e_typeCount);
|
||||
b2Assert(b2Shape::e_unknown < type2 && type2 < b2Shape::e_typeCount);
|
||||
|
||||
b2ContactCreateFcn* createFcn = s_registers[type1][type2].createFcn;
|
||||
if (createFcn)
|
||||
{
|
||||
if (s_registers[type1][type2].primary)
|
||||
{
|
||||
return createFcn(fixtureA, fixtureB, allocator);
|
||||
}
|
||||
else
|
||||
{
|
||||
return createFcn(fixtureB, fixtureA, allocator);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
void b2Contact::Destroy(b2Contact* contact, b2BlockAllocator* allocator)
|
||||
{
|
||||
b2Assert(s_initialized == true);
|
||||
|
||||
if (contact->m_manifold.pointCount > 0)
|
||||
{
|
||||
contact->GetFixtureA()->GetBody()->SetAwake(true);
|
||||
contact->GetFixtureB()->GetBody()->SetAwake(true);
|
||||
}
|
||||
|
||||
b2Shape::Type typeA = contact->GetFixtureA()->GetType();
|
||||
b2Shape::Type typeB = contact->GetFixtureB()->GetType();
|
||||
|
||||
b2Assert(b2Shape::e_unknown < typeA && typeB < b2Shape::e_typeCount);
|
||||
b2Assert(b2Shape::e_unknown < typeA && typeB < b2Shape::e_typeCount);
|
||||
|
||||
b2ContactDestroyFcn* destroyFcn = s_registers[typeA][typeB].destroyFcn;
|
||||
destroyFcn(contact, allocator);
|
||||
}
|
||||
|
||||
b2Contact::b2Contact(b2Fixture* fA, b2Fixture* fB)
|
||||
{
|
||||
m_flags = e_enabledFlag;
|
||||
|
||||
m_fixtureA = fA;
|
||||
m_fixtureB = fB;
|
||||
|
||||
m_manifold.pointCount = 0;
|
||||
|
||||
m_prev = NULL;
|
||||
m_next = NULL;
|
||||
|
||||
m_nodeA.contact = NULL;
|
||||
m_nodeA.prev = NULL;
|
||||
m_nodeA.next = NULL;
|
||||
m_nodeA.other = NULL;
|
||||
|
||||
m_nodeB.contact = NULL;
|
||||
m_nodeB.prev = NULL;
|
||||
m_nodeB.next = NULL;
|
||||
m_nodeB.other = NULL;
|
||||
|
||||
m_toiCount = 0;
|
||||
}
|
||||
|
||||
// Update the contact manifold and touching status.
|
||||
// Note: do not assume the fixture AABBs are overlapping or are valid.
|
||||
void b2Contact::Update(b2ContactListener* listener)
|
||||
{
|
||||
b2Manifold oldManifold = m_manifold;
|
||||
|
||||
// Re-enable this contact.
|
||||
m_flags |= e_enabledFlag;
|
||||
|
||||
bool touching = false;
|
||||
bool wasTouching = (m_flags & e_touchingFlag) == e_touchingFlag;
|
||||
|
||||
bool sensorA = m_fixtureA->IsSensor();
|
||||
bool sensorB = m_fixtureB->IsSensor();
|
||||
bool sensor = sensorA || sensorB;
|
||||
|
||||
b2Body* bodyA = m_fixtureA->GetBody();
|
||||
b2Body* bodyB = m_fixtureB->GetBody();
|
||||
const b2Transform& xfA = bodyA->GetTransform();
|
||||
const b2Transform& xfB = bodyB->GetTransform();
|
||||
|
||||
// Is this contact a sensor?
|
||||
if (sensor)
|
||||
{
|
||||
const b2Shape* shapeA = m_fixtureA->GetShape();
|
||||
const b2Shape* shapeB = m_fixtureB->GetShape();
|
||||
touching = b2TestOverlap(shapeA, shapeB, xfA, xfB);
|
||||
|
||||
// Sensors don't generate manifolds.
|
||||
m_manifold.pointCount = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
Evaluate(&m_manifold, xfA, xfB);
|
||||
touching = m_manifold.pointCount > 0;
|
||||
|
||||
// Match old contact ids to new contact ids and copy the
|
||||
// stored impulses to warm start the solver.
|
||||
for (int32 i = 0; i < m_manifold.pointCount; ++i)
|
||||
{
|
||||
b2ManifoldPoint* mp2 = m_manifold.points + i;
|
||||
mp2->normalImpulse = 0.0f;
|
||||
mp2->tangentImpulse = 0.0f;
|
||||
b2ContactID id2 = mp2->id;
|
||||
|
||||
for (int32 j = 0; j < oldManifold.pointCount; ++j)
|
||||
{
|
||||
b2ManifoldPoint* mp1 = oldManifold.points + j;
|
||||
|
||||
if (mp1->id.key == id2.key)
|
||||
{
|
||||
mp2->normalImpulse = mp1->normalImpulse;
|
||||
mp2->tangentImpulse = mp1->tangentImpulse;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (touching != wasTouching)
|
||||
{
|
||||
bodyA->SetAwake(true);
|
||||
bodyB->SetAwake(true);
|
||||
}
|
||||
}
|
||||
|
||||
if (touching)
|
||||
{
|
||||
m_flags |= e_touchingFlag;
|
||||
}
|
||||
else
|
||||
{
|
||||
m_flags &= ~e_touchingFlag;
|
||||
}
|
||||
|
||||
if (wasTouching == false && touching == true && listener)
|
||||
{
|
||||
listener->BeginContact(this);
|
||||
}
|
||||
|
||||
if (wasTouching == true && touching == false && listener)
|
||||
{
|
||||
listener->EndContact(this);
|
||||
}
|
||||
|
||||
if (sensor == false && touching && listener)
|
||||
{
|
||||
listener->PreSolve(this, &oldManifold);
|
||||
}
|
||||
}
|
||||
242
AndEngine/jni/Box2D/Dynamics/Contacts/b2Contact.h
Normal file
242
AndEngine/jni/Box2D/Dynamics/Contacts/b2Contact.h
Normal file
@@ -0,0 +1,242 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef B2_CONTACT_H
|
||||
#define B2_CONTACT_H
|
||||
|
||||
#include "Box2D/Common/b2Math.h"
|
||||
#include "Box2D/Collision/b2Collision.h"
|
||||
#include "Box2D/Collision/Shapes/b2Shape.h"
|
||||
#include "Box2D/Dynamics/Contacts/b2Contact.h"
|
||||
#include "Box2D/Dynamics/b2Fixture.h"
|
||||
|
||||
class b2Body;
|
||||
class b2Contact;
|
||||
class b2Fixture;
|
||||
class b2World;
|
||||
class b2BlockAllocator;
|
||||
class b2StackAllocator;
|
||||
class b2ContactListener;
|
||||
|
||||
typedef b2Contact* b2ContactCreateFcn(b2Fixture* fixtureA, b2Fixture* fixtureB, b2BlockAllocator* allocator);
|
||||
typedef void b2ContactDestroyFcn(b2Contact* contact, b2BlockAllocator* allocator);
|
||||
|
||||
struct b2ContactRegister
|
||||
{
|
||||
b2ContactCreateFcn* createFcn;
|
||||
b2ContactDestroyFcn* destroyFcn;
|
||||
bool primary;
|
||||
};
|
||||
|
||||
/// A contact edge is used to connect bodies and contacts together
|
||||
/// in a contact graph where each body is a node and each contact
|
||||
/// is an edge. A contact edge belongs to a doubly linked list
|
||||
/// maintained in each attached body. Each contact has two contact
|
||||
/// nodes, one for each attached body.
|
||||
struct b2ContactEdge
|
||||
{
|
||||
b2Body* other; ///< provides quick access to the other body attached.
|
||||
b2Contact* contact; ///< the contact
|
||||
b2ContactEdge* prev; ///< the previous contact edge in the body's contact list
|
||||
b2ContactEdge* next; ///< the next contact edge in the body's contact list
|
||||
};
|
||||
|
||||
/// The class manages contact between two shapes. A contact exists for each overlapping
|
||||
/// AABB in the broad-phase (except if filtered). Therefore a contact object may exist
|
||||
/// that has no contact points.
|
||||
class b2Contact
|
||||
{
|
||||
public:
|
||||
|
||||
/// Get the contact manifold. Do not modify the manifold unless you understand the
|
||||
/// internals of Box2D.
|
||||
b2Manifold* GetManifold();
|
||||
const b2Manifold* GetManifold() const;
|
||||
|
||||
/// Get the world manifold.
|
||||
void GetWorldManifold(b2WorldManifold* worldManifold) const;
|
||||
|
||||
/// Is this contact touching?
|
||||
bool IsTouching() const;
|
||||
|
||||
/// Enable/disable this contact. This can be used inside the pre-solve
|
||||
/// contact listener. The contact is only disabled for the current
|
||||
/// time step (or sub-step in continuous collisions).
|
||||
void SetEnabled(bool flag);
|
||||
|
||||
/// Has this contact been disabled?
|
||||
bool IsEnabled() const;
|
||||
|
||||
/// Get the next contact in the world's contact list.
|
||||
b2Contact* GetNext();
|
||||
const b2Contact* GetNext() const;
|
||||
|
||||
/// Get the first fixture in this contact.
|
||||
b2Fixture* GetFixtureA();
|
||||
const b2Fixture* GetFixtureA() const;
|
||||
|
||||
/// Get the second fixture in this contact.
|
||||
b2Fixture* GetFixtureB();
|
||||
const b2Fixture* GetFixtureB() const;
|
||||
|
||||
/// Evaluate this contact with your own manifold and transforms.
|
||||
virtual void Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) = 0;
|
||||
|
||||
protected:
|
||||
friend class b2ContactManager;
|
||||
friend class b2World;
|
||||
friend class b2ContactSolver;
|
||||
friend class b2Body;
|
||||
friend class b2Fixture;
|
||||
|
||||
// Flags stored in m_flags
|
||||
enum
|
||||
{
|
||||
// Used when crawling contact graph when forming islands.
|
||||
e_islandFlag = 0x0001,
|
||||
|
||||
// Set when the shapes are touching.
|
||||
e_touchingFlag = 0x0002,
|
||||
|
||||
// This contact can be disabled (by user)
|
||||
e_enabledFlag = 0x0004,
|
||||
|
||||
// This contact needs filtering because a fixture filter was changed.
|
||||
e_filterFlag = 0x0008,
|
||||
|
||||
// This bullet contact had a TOI event
|
||||
e_bulletHitFlag = 0x0010,
|
||||
|
||||
};
|
||||
|
||||
/// Flag this contact for filtering. Filtering will occur the next time step.
|
||||
void FlagForFiltering();
|
||||
|
||||
static void AddType(b2ContactCreateFcn* createFcn, b2ContactDestroyFcn* destroyFcn,
|
||||
b2Shape::Type typeA, b2Shape::Type typeB);
|
||||
static void InitializeRegisters();
|
||||
static b2Contact* Create(b2Fixture* fixtureA, b2Fixture* fixtureB, b2BlockAllocator* allocator);
|
||||
static void Destroy(b2Contact* contact, b2Shape::Type typeA, b2Shape::Type typeB, b2BlockAllocator* allocator);
|
||||
static void Destroy(b2Contact* contact, b2BlockAllocator* allocator);
|
||||
|
||||
b2Contact() : m_fixtureA(NULL), m_fixtureB(NULL) {}
|
||||
b2Contact(b2Fixture* fixtureA, b2Fixture* fixtureB);
|
||||
virtual ~b2Contact() {}
|
||||
|
||||
void Update(b2ContactListener* listener);
|
||||
|
||||
static b2ContactRegister s_registers[b2Shape::e_typeCount][b2Shape::e_typeCount];
|
||||
static bool s_initialized;
|
||||
|
||||
uint32 m_flags;
|
||||
|
||||
// World pool and list pointers.
|
||||
b2Contact* m_prev;
|
||||
b2Contact* m_next;
|
||||
|
||||
// Nodes for connecting bodies.
|
||||
b2ContactEdge m_nodeA;
|
||||
b2ContactEdge m_nodeB;
|
||||
|
||||
b2Fixture* m_fixtureA;
|
||||
b2Fixture* m_fixtureB;
|
||||
|
||||
b2Manifold m_manifold;
|
||||
|
||||
int32 m_toiCount;
|
||||
// float32 m_toi;
|
||||
};
|
||||
|
||||
inline b2Manifold* b2Contact::GetManifold()
|
||||
{
|
||||
return &m_manifold;
|
||||
}
|
||||
|
||||
inline const b2Manifold* b2Contact::GetManifold() const
|
||||
{
|
||||
return &m_manifold;
|
||||
}
|
||||
|
||||
inline void b2Contact::GetWorldManifold(b2WorldManifold* worldManifold) const
|
||||
{
|
||||
const b2Body* bodyA = m_fixtureA->GetBody();
|
||||
const b2Body* bodyB = m_fixtureB->GetBody();
|
||||
const b2Shape* shapeA = m_fixtureA->GetShape();
|
||||
const b2Shape* shapeB = m_fixtureB->GetShape();
|
||||
|
||||
worldManifold->Initialize(&m_manifold, bodyA->GetTransform(), shapeA->m_radius, bodyB->GetTransform(), shapeB->m_radius);
|
||||
}
|
||||
|
||||
inline void b2Contact::SetEnabled(bool flag)
|
||||
{
|
||||
if (flag)
|
||||
{
|
||||
m_flags |= e_enabledFlag;
|
||||
}
|
||||
else
|
||||
{
|
||||
m_flags &= ~e_enabledFlag;
|
||||
}
|
||||
}
|
||||
|
||||
inline bool b2Contact::IsEnabled() const
|
||||
{
|
||||
return (m_flags & e_enabledFlag) == e_enabledFlag;
|
||||
}
|
||||
|
||||
inline bool b2Contact::IsTouching() const
|
||||
{
|
||||
return (m_flags & e_touchingFlag) == e_touchingFlag;
|
||||
}
|
||||
|
||||
inline b2Contact* b2Contact::GetNext()
|
||||
{
|
||||
return m_next;
|
||||
}
|
||||
|
||||
inline const b2Contact* b2Contact::GetNext() const
|
||||
{
|
||||
return m_next;
|
||||
}
|
||||
|
||||
inline b2Fixture* b2Contact::GetFixtureA()
|
||||
{
|
||||
return m_fixtureA;
|
||||
}
|
||||
|
||||
inline const b2Fixture* b2Contact::GetFixtureA() const
|
||||
{
|
||||
return m_fixtureA;
|
||||
}
|
||||
|
||||
inline b2Fixture* b2Contact::GetFixtureB()
|
||||
{
|
||||
return m_fixtureB;
|
||||
}
|
||||
|
||||
inline const b2Fixture* b2Contact::GetFixtureB() const
|
||||
{
|
||||
return m_fixtureB;
|
||||
}
|
||||
|
||||
inline void b2Contact::FlagForFiltering()
|
||||
{
|
||||
m_flags |= e_filterFlag;
|
||||
}
|
||||
|
||||
#endif
|
||||
623
AndEngine/jni/Box2D/Dynamics/Contacts/b2ContactSolver.cpp
Normal file
623
AndEngine/jni/Box2D/Dynamics/Contacts/b2ContactSolver.cpp
Normal file
@@ -0,0 +1,623 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#include "Box2D/Dynamics/Contacts/b2ContactSolver.h"
|
||||
#include "Box2D/Dynamics/Contacts/b2Contact.h"
|
||||
#include "Box2D/Dynamics/b2Body.h"
|
||||
#include "Box2D/Dynamics/b2Fixture.h"
|
||||
#include "Box2D/Dynamics/b2World.h"
|
||||
#include "Box2D/Common/b2StackAllocator.h"
|
||||
|
||||
#define B2_DEBUG_SOLVER 0
|
||||
|
||||
b2ContactSolver::b2ContactSolver(b2Contact** contacts, int32 contactCount,
|
||||
b2StackAllocator* allocator, float32 impulseRatio)
|
||||
{
|
||||
m_allocator = allocator;
|
||||
|
||||
m_constraintCount = contactCount;
|
||||
m_constraints = (b2ContactConstraint*)m_allocator->Allocate(m_constraintCount * sizeof(b2ContactConstraint));
|
||||
|
||||
for (int32 i = 0; i < m_constraintCount; ++i)
|
||||
{
|
||||
b2Contact* contact = contacts[i];
|
||||
|
||||
b2Fixture* fixtureA = contact->m_fixtureA;
|
||||
b2Fixture* fixtureB = contact->m_fixtureB;
|
||||
b2Shape* shapeA = fixtureA->GetShape();
|
||||
b2Shape* shapeB = fixtureB->GetShape();
|
||||
float32 radiusA = shapeA->m_radius;
|
||||
float32 radiusB = shapeB->m_radius;
|
||||
b2Body* bodyA = fixtureA->GetBody();
|
||||
b2Body* bodyB = fixtureB->GetBody();
|
||||
b2Manifold* manifold = contact->GetManifold();
|
||||
|
||||
float32 friction = b2MixFriction(fixtureA->GetFriction(), fixtureB->GetFriction());
|
||||
float32 restitution = b2MixRestitution(fixtureA->GetRestitution(), fixtureB->GetRestitution());
|
||||
|
||||
b2Vec2 vA = bodyA->m_linearVelocity;
|
||||
b2Vec2 vB = bodyB->m_linearVelocity;
|
||||
float32 wA = bodyA->m_angularVelocity;
|
||||
float32 wB = bodyB->m_angularVelocity;
|
||||
|
||||
b2Assert(manifold->pointCount > 0);
|
||||
|
||||
b2WorldManifold worldManifold;
|
||||
worldManifold.Initialize(manifold, bodyA->m_xf, radiusA, bodyB->m_xf, radiusB);
|
||||
|
||||
b2ContactConstraint* cc = m_constraints + i;
|
||||
cc->bodyA = bodyA;
|
||||
cc->bodyB = bodyB;
|
||||
cc->manifold = manifold;
|
||||
cc->normal = worldManifold.normal;
|
||||
cc->pointCount = manifold->pointCount;
|
||||
cc->friction = friction;
|
||||
|
||||
cc->localNormal = manifold->localNormal;
|
||||
cc->localPoint = manifold->localPoint;
|
||||
cc->radius = radiusA + radiusB;
|
||||
cc->type = manifold->type;
|
||||
|
||||
for (int32 j = 0; j < cc->pointCount; ++j)
|
||||
{
|
||||
b2ManifoldPoint* cp = manifold->points + j;
|
||||
b2ContactConstraintPoint* ccp = cc->points + j;
|
||||
|
||||
ccp->normalImpulse = impulseRatio * cp->normalImpulse;
|
||||
ccp->tangentImpulse = impulseRatio * cp->tangentImpulse;
|
||||
|
||||
ccp->localPoint = cp->localPoint;
|
||||
|
||||
ccp->rA = worldManifold.points[j] - bodyA->m_sweep.c;
|
||||
ccp->rB = worldManifold.points[j] - bodyB->m_sweep.c;
|
||||
|
||||
float32 rnA = b2Cross(ccp->rA, cc->normal);
|
||||
float32 rnB = b2Cross(ccp->rB, cc->normal);
|
||||
rnA *= rnA;
|
||||
rnB *= rnB;
|
||||
|
||||
float32 kNormal = bodyA->m_invMass + bodyB->m_invMass + bodyA->m_invI * rnA + bodyB->m_invI * rnB;
|
||||
|
||||
b2Assert(kNormal > b2_epsilon);
|
||||
ccp->normalMass = 1.0f / kNormal;
|
||||
|
||||
b2Vec2 tangent = b2Cross(cc->normal, 1.0f);
|
||||
|
||||
float32 rtA = b2Cross(ccp->rA, tangent);
|
||||
float32 rtB = b2Cross(ccp->rB, tangent);
|
||||
rtA *= rtA;
|
||||
rtB *= rtB;
|
||||
|
||||
float32 kTangent = bodyA->m_invMass + bodyB->m_invMass + bodyA->m_invI * rtA + bodyB->m_invI * rtB;
|
||||
|
||||
b2Assert(kTangent > b2_epsilon);
|
||||
ccp->tangentMass = 1.0f / kTangent;
|
||||
|
||||
// Setup a velocity bias for restitution.
|
||||
ccp->velocityBias = 0.0f;
|
||||
float32 vRel = b2Dot(cc->normal, vB + b2Cross(wB, ccp->rB) - vA - b2Cross(wA, ccp->rA));
|
||||
if (vRel < -b2_velocityThreshold)
|
||||
{
|
||||
ccp->velocityBias = -restitution * vRel;
|
||||
}
|
||||
}
|
||||
|
||||
// If we have two points, then prepare the block solver.
|
||||
if (cc->pointCount == 2)
|
||||
{
|
||||
b2ContactConstraintPoint* ccp1 = cc->points + 0;
|
||||
b2ContactConstraintPoint* ccp2 = cc->points + 1;
|
||||
|
||||
float32 invMassA = bodyA->m_invMass;
|
||||
float32 invIA = bodyA->m_invI;
|
||||
float32 invMassB = bodyB->m_invMass;
|
||||
float32 invIB = bodyB->m_invI;
|
||||
|
||||
float32 rn1A = b2Cross(ccp1->rA, cc->normal);
|
||||
float32 rn1B = b2Cross(ccp1->rB, cc->normal);
|
||||
float32 rn2A = b2Cross(ccp2->rA, cc->normal);
|
||||
float32 rn2B = b2Cross(ccp2->rB, cc->normal);
|
||||
|
||||
float32 k11 = invMassA + invMassB + invIA * rn1A * rn1A + invIB * rn1B * rn1B;
|
||||
float32 k22 = invMassA + invMassB + invIA * rn2A * rn2A + invIB * rn2B * rn2B;
|
||||
float32 k12 = invMassA + invMassB + invIA * rn1A * rn2A + invIB * rn1B * rn2B;
|
||||
|
||||
// Ensure a reasonable condition number.
|
||||
const float32 k_maxConditionNumber = 100.0f;
|
||||
if (k11 * k11 < k_maxConditionNumber * (k11 * k22 - k12 * k12))
|
||||
{
|
||||
// K is safe to invert.
|
||||
cc->K.col1.Set(k11, k12);
|
||||
cc->K.col2.Set(k12, k22);
|
||||
cc->normalMass = cc->K.GetInverse();
|
||||
}
|
||||
else
|
||||
{
|
||||
// The constraints are redundant, just use one.
|
||||
// TODO_ERIN use deepest?
|
||||
cc->pointCount = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
b2ContactSolver::~b2ContactSolver()
|
||||
{
|
||||
m_allocator->Free(m_constraints);
|
||||
}
|
||||
|
||||
void b2ContactSolver::WarmStart()
|
||||
{
|
||||
// Warm start.
|
||||
for (int32 i = 0; i < m_constraintCount; ++i)
|
||||
{
|
||||
b2ContactConstraint* c = m_constraints + i;
|
||||
|
||||
b2Body* bodyA = c->bodyA;
|
||||
b2Body* bodyB = c->bodyB;
|
||||
float32 invMassA = bodyA->m_invMass;
|
||||
float32 invIA = bodyA->m_invI;
|
||||
float32 invMassB = bodyB->m_invMass;
|
||||
float32 invIB = bodyB->m_invI;
|
||||
b2Vec2 normal = c->normal;
|
||||
b2Vec2 tangent = b2Cross(normal, 1.0f);
|
||||
|
||||
for (int32 j = 0; j < c->pointCount; ++j)
|
||||
{
|
||||
b2ContactConstraintPoint* ccp = c->points + j;
|
||||
b2Vec2 P = ccp->normalImpulse * normal + ccp->tangentImpulse * tangent;
|
||||
bodyA->m_angularVelocity -= invIA * b2Cross(ccp->rA, P);
|
||||
bodyA->m_linearVelocity -= invMassA * P;
|
||||
bodyB->m_angularVelocity += invIB * b2Cross(ccp->rB, P);
|
||||
bodyB->m_linearVelocity += invMassB * P;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void b2ContactSolver::SolveVelocityConstraints()
|
||||
{
|
||||
for (int32 i = 0; i < m_constraintCount; ++i)
|
||||
{
|
||||
b2ContactConstraint* c = m_constraints + i;
|
||||
b2Body* bodyA = c->bodyA;
|
||||
b2Body* bodyB = c->bodyB;
|
||||
float32 wA = bodyA->m_angularVelocity;
|
||||
float32 wB = bodyB->m_angularVelocity;
|
||||
b2Vec2 vA = bodyA->m_linearVelocity;
|
||||
b2Vec2 vB = bodyB->m_linearVelocity;
|
||||
float32 invMassA = bodyA->m_invMass;
|
||||
float32 invIA = bodyA->m_invI;
|
||||
float32 invMassB = bodyB->m_invMass;
|
||||
float32 invIB = bodyB->m_invI;
|
||||
b2Vec2 normal = c->normal;
|
||||
b2Vec2 tangent = b2Cross(normal, 1.0f);
|
||||
float32 friction = c->friction;
|
||||
|
||||
b2Assert(c->pointCount == 1 || c->pointCount == 2);
|
||||
|
||||
// Solve tangent constraints
|
||||
for (int32 j = 0; j < c->pointCount; ++j)
|
||||
{
|
||||
b2ContactConstraintPoint* ccp = c->points + j;
|
||||
|
||||
// Relative velocity at contact
|
||||
b2Vec2 dv = vB + b2Cross(wB, ccp->rB) - vA - b2Cross(wA, ccp->rA);
|
||||
|
||||
// Compute tangent force
|
||||
float32 vt = b2Dot(dv, tangent);
|
||||
float32 lambda = ccp->tangentMass * (-vt);
|
||||
|
||||
// b2Clamp the accumulated force
|
||||
float32 maxFriction = friction * ccp->normalImpulse;
|
||||
float32 newImpulse = b2Clamp(ccp->tangentImpulse + lambda, -maxFriction, maxFriction);
|
||||
lambda = newImpulse - ccp->tangentImpulse;
|
||||
|
||||
// Apply contact impulse
|
||||
b2Vec2 P = lambda * tangent;
|
||||
|
||||
vA -= invMassA * P;
|
||||
wA -= invIA * b2Cross(ccp->rA, P);
|
||||
|
||||
vB += invMassB * P;
|
||||
wB += invIB * b2Cross(ccp->rB, P);
|
||||
|
||||
ccp->tangentImpulse = newImpulse;
|
||||
}
|
||||
|
||||
// Solve normal constraints
|
||||
if (c->pointCount == 1)
|
||||
{
|
||||
b2ContactConstraintPoint* ccp = c->points + 0;
|
||||
|
||||
// Relative velocity at contact
|
||||
b2Vec2 dv = vB + b2Cross(wB, ccp->rB) - vA - b2Cross(wA, ccp->rA);
|
||||
|
||||
// Compute normal impulse
|
||||
float32 vn = b2Dot(dv, normal);
|
||||
float32 lambda = -ccp->normalMass * (vn - ccp->velocityBias);
|
||||
|
||||
// b2Clamp the accumulated impulse
|
||||
float32 newImpulse = b2Max(ccp->normalImpulse + lambda, 0.0f);
|
||||
lambda = newImpulse - ccp->normalImpulse;
|
||||
|
||||
// Apply contact impulse
|
||||
b2Vec2 P = lambda * normal;
|
||||
vA -= invMassA * P;
|
||||
wA -= invIA * b2Cross(ccp->rA, P);
|
||||
|
||||
vB += invMassB * P;
|
||||
wB += invIB * b2Cross(ccp->rB, P);
|
||||
ccp->normalImpulse = newImpulse;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Block solver developed in collaboration with Dirk Gregorius (back in 01/07 on Box2D_Lite).
|
||||
// Build the mini LCP for this contact patch
|
||||
//
|
||||
// vn = A * x + b, vn >= 0, , vn >= 0, x >= 0 and vn_i * x_i = 0 with i = 1..2
|
||||
//
|
||||
// A = J * W * JT and J = ( -n, -r1 x n, n, r2 x n )
|
||||
// b = vn_0 - velocityBias
|
||||
//
|
||||
// The system is solved using the "Total enumeration method" (s. Murty). The complementary constraint vn_i * x_i
|
||||
// implies that we must have in any solution either vn_i = 0 or x_i = 0. So for the 2D contact problem the cases
|
||||
// vn1 = 0 and vn2 = 0, x1 = 0 and x2 = 0, x1 = 0 and vn2 = 0, x2 = 0 and vn1 = 0 need to be tested. The first valid
|
||||
// solution that satisfies the problem is chosen.
|
||||
//
|
||||
// In order to account of the accumulated impulse 'a' (because of the iterative nature of the solver which only requires
|
||||
// that the accumulated impulse is clamped and not the incremental impulse) we change the impulse variable (x_i).
|
||||
//
|
||||
// Substitute:
|
||||
//
|
||||
// x = x' - a
|
||||
//
|
||||
// Plug into above equation:
|
||||
//
|
||||
// vn = A * x + b
|
||||
// = A * (x' - a) + b
|
||||
// = A * x' + b - A * a
|
||||
// = A * x' + b'
|
||||
// b' = b - A * a;
|
||||
|
||||
b2ContactConstraintPoint* cp1 = c->points + 0;
|
||||
b2ContactConstraintPoint* cp2 = c->points + 1;
|
||||
|
||||
b2Vec2 a(cp1->normalImpulse, cp2->normalImpulse);
|
||||
b2Assert(a.x >= 0.0f && a.y >= 0.0f);
|
||||
|
||||
// Relative velocity at contact
|
||||
b2Vec2 dv1 = vB + b2Cross(wB, cp1->rB) - vA - b2Cross(wA, cp1->rA);
|
||||
b2Vec2 dv2 = vB + b2Cross(wB, cp2->rB) - vA - b2Cross(wA, cp2->rA);
|
||||
|
||||
// Compute normal velocity
|
||||
float32 vn1 = b2Dot(dv1, normal);
|
||||
float32 vn2 = b2Dot(dv2, normal);
|
||||
|
||||
b2Vec2 b;
|
||||
b.x = vn1 - cp1->velocityBias;
|
||||
b.y = vn2 - cp2->velocityBias;
|
||||
b -= b2Mul(c->K, a);
|
||||
|
||||
const float32 k_errorTol = 1e-3f;
|
||||
B2_NOT_USED(k_errorTol);
|
||||
|
||||
for (;;)
|
||||
{
|
||||
//
|
||||
// Case 1: vn = 0
|
||||
//
|
||||
// 0 = A * x' + b'
|
||||
//
|
||||
// Solve for x':
|
||||
//
|
||||
// x' = - inv(A) * b'
|
||||
//
|
||||
b2Vec2 x = - b2Mul(c->normalMass, b);
|
||||
|
||||
if (x.x >= 0.0f && x.y >= 0.0f)
|
||||
{
|
||||
// Resubstitute for the incremental impulse
|
||||
b2Vec2 d = x - a;
|
||||
|
||||
// Apply incremental impulse
|
||||
b2Vec2 P1 = d.x * normal;
|
||||
b2Vec2 P2 = d.y * normal;
|
||||
vA -= invMassA * (P1 + P2);
|
||||
wA -= invIA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2));
|
||||
|
||||
vB += invMassB * (P1 + P2);
|
||||
wB += invIB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2));
|
||||
|
||||
// Accumulate
|
||||
cp1->normalImpulse = x.x;
|
||||
cp2->normalImpulse = x.y;
|
||||
|
||||
#if B2_DEBUG_SOLVER == 1
|
||||
// Postconditions
|
||||
dv1 = vB + b2Cross(wB, cp1->rB) - vA - b2Cross(wA, cp1->rA);
|
||||
dv2 = vB + b2Cross(wB, cp2->rB) - vA - b2Cross(wA, cp2->rA);
|
||||
|
||||
// Compute normal velocity
|
||||
vn1 = b2Dot(dv1, normal);
|
||||
vn2 = b2Dot(dv2, normal);
|
||||
|
||||
b2Assert(b2Abs(vn1 - cp1->velocityBias) < k_errorTol);
|
||||
b2Assert(b2Abs(vn2 - cp2->velocityBias) < k_errorTol);
|
||||
#endif
|
||||
break;
|
||||
}
|
||||
|
||||
//
|
||||
// Case 2: vn1 = 0 and x2 = 0
|
||||
//
|
||||
// 0 = a11 * x1' + a12 * 0 + b1'
|
||||
// vn2 = a21 * x1' + a22 * 0 + b2'
|
||||
//
|
||||
x.x = - cp1->normalMass * b.x;
|
||||
x.y = 0.0f;
|
||||
vn1 = 0.0f;
|
||||
vn2 = c->K.col1.y * x.x + b.y;
|
||||
|
||||
if (x.x >= 0.0f && vn2 >= 0.0f)
|
||||
{
|
||||
// Resubstitute for the incremental impulse
|
||||
b2Vec2 d = x - a;
|
||||
|
||||
// Apply incremental impulse
|
||||
b2Vec2 P1 = d.x * normal;
|
||||
b2Vec2 P2 = d.y * normal;
|
||||
vA -= invMassA * (P1 + P2);
|
||||
wA -= invIA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2));
|
||||
|
||||
vB += invMassB * (P1 + P2);
|
||||
wB += invIB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2));
|
||||
|
||||
// Accumulate
|
||||
cp1->normalImpulse = x.x;
|
||||
cp2->normalImpulse = x.y;
|
||||
|
||||
#if B2_DEBUG_SOLVER == 1
|
||||
// Postconditions
|
||||
dv1 = vB + b2Cross(wB, cp1->rB) - vA - b2Cross(wA, cp1->rA);
|
||||
|
||||
// Compute normal velocity
|
||||
vn1 = b2Dot(dv1, normal);
|
||||
|
||||
b2Assert(b2Abs(vn1 - cp1->velocityBias) < k_errorTol);
|
||||
#endif
|
||||
break;
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
// Case 3: vn2 = 0 and x1 = 0
|
||||
//
|
||||
// vn1 = a11 * 0 + a12 * x2' + b1'
|
||||
// 0 = a21 * 0 + a22 * x2' + b2'
|
||||
//
|
||||
x.x = 0.0f;
|
||||
x.y = - cp2->normalMass * b.y;
|
||||
vn1 = c->K.col2.x * x.y + b.x;
|
||||
vn2 = 0.0f;
|
||||
|
||||
if (x.y >= 0.0f && vn1 >= 0.0f)
|
||||
{
|
||||
// Resubstitute for the incremental impulse
|
||||
b2Vec2 d = x - a;
|
||||
|
||||
// Apply incremental impulse
|
||||
b2Vec2 P1 = d.x * normal;
|
||||
b2Vec2 P2 = d.y * normal;
|
||||
vA -= invMassA * (P1 + P2);
|
||||
wA -= invIA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2));
|
||||
|
||||
vB += invMassB * (P1 + P2);
|
||||
wB += invIB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2));
|
||||
|
||||
// Accumulate
|
||||
cp1->normalImpulse = x.x;
|
||||
cp2->normalImpulse = x.y;
|
||||
|
||||
#if B2_DEBUG_SOLVER == 1
|
||||
// Postconditions
|
||||
dv2 = vB + b2Cross(wB, cp2->rB) - vA - b2Cross(wA, cp2->rA);
|
||||
|
||||
// Compute normal velocity
|
||||
vn2 = b2Dot(dv2, normal);
|
||||
|
||||
b2Assert(b2Abs(vn2 - cp2->velocityBias) < k_errorTol);
|
||||
#endif
|
||||
break;
|
||||
}
|
||||
|
||||
//
|
||||
// Case 4: x1 = 0 and x2 = 0
|
||||
//
|
||||
// vn1 = b1
|
||||
// vn2 = b2;
|
||||
x.x = 0.0f;
|
||||
x.y = 0.0f;
|
||||
vn1 = b.x;
|
||||
vn2 = b.y;
|
||||
|
||||
if (vn1 >= 0.0f && vn2 >= 0.0f )
|
||||
{
|
||||
// Resubstitute for the incremental impulse
|
||||
b2Vec2 d = x - a;
|
||||
|
||||
// Apply incremental impulse
|
||||
b2Vec2 P1 = d.x * normal;
|
||||
b2Vec2 P2 = d.y * normal;
|
||||
vA -= invMassA * (P1 + P2);
|
||||
wA -= invIA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2));
|
||||
|
||||
vB += invMassB * (P1 + P2);
|
||||
wB += invIB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2));
|
||||
|
||||
// Accumulate
|
||||
cp1->normalImpulse = x.x;
|
||||
cp2->normalImpulse = x.y;
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
// No solution, give up. This is hit sometimes, but it doesn't seem to matter.
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
bodyA->m_linearVelocity = vA;
|
||||
bodyA->m_angularVelocity = wA;
|
||||
bodyB->m_linearVelocity = vB;
|
||||
bodyB->m_angularVelocity = wB;
|
||||
}
|
||||
}
|
||||
|
||||
void b2ContactSolver::StoreImpulses()
|
||||
{
|
||||
for (int32 i = 0; i < m_constraintCount; ++i)
|
||||
{
|
||||
b2ContactConstraint* c = m_constraints + i;
|
||||
b2Manifold* m = c->manifold;
|
||||
|
||||
for (int32 j = 0; j < c->pointCount; ++j)
|
||||
{
|
||||
m->points[j].normalImpulse = c->points[j].normalImpulse;
|
||||
m->points[j].tangentImpulse = c->points[j].tangentImpulse;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct b2PositionSolverManifold
|
||||
{
|
||||
void Initialize(b2ContactConstraint* cc, int32 index)
|
||||
{
|
||||
b2Assert(cc->pointCount > 0);
|
||||
|
||||
switch (cc->type)
|
||||
{
|
||||
case b2Manifold::e_circles:
|
||||
{
|
||||
b2Vec2 pointA = cc->bodyA->GetWorldPoint(cc->localPoint);
|
||||
b2Vec2 pointB = cc->bodyB->GetWorldPoint(cc->points[0].localPoint);
|
||||
if (b2DistanceSquared(pointA, pointB) > b2_epsilon * b2_epsilon)
|
||||
{
|
||||
normal = pointB - pointA;
|
||||
normal.Normalize();
|
||||
}
|
||||
else
|
||||
{
|
||||
normal.Set(1.0f, 0.0f);
|
||||
}
|
||||
|
||||
point = 0.5f * (pointA + pointB);
|
||||
separation = b2Dot(pointB - pointA, normal) - cc->radius;
|
||||
}
|
||||
break;
|
||||
|
||||
case b2Manifold::e_faceA:
|
||||
{
|
||||
normal = cc->bodyA->GetWorldVector(cc->localNormal);
|
||||
b2Vec2 planePoint = cc->bodyA->GetWorldPoint(cc->localPoint);
|
||||
|
||||
b2Vec2 clipPoint = cc->bodyB->GetWorldPoint(cc->points[index].localPoint);
|
||||
separation = b2Dot(clipPoint - planePoint, normal) - cc->radius;
|
||||
point = clipPoint;
|
||||
}
|
||||
break;
|
||||
|
||||
case b2Manifold::e_faceB:
|
||||
{
|
||||
normal = cc->bodyB->GetWorldVector(cc->localNormal);
|
||||
b2Vec2 planePoint = cc->bodyB->GetWorldPoint(cc->localPoint);
|
||||
|
||||
b2Vec2 clipPoint = cc->bodyA->GetWorldPoint(cc->points[index].localPoint);
|
||||
separation = b2Dot(clipPoint - planePoint, normal) - cc->radius;
|
||||
point = clipPoint;
|
||||
|
||||
// Ensure normal points from A to B
|
||||
normal = -normal;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
b2Vec2 normal;
|
||||
b2Vec2 point;
|
||||
float32 separation;
|
||||
};
|
||||
|
||||
// Sequential solver.
|
||||
bool b2ContactSolver::SolvePositionConstraints(float32 baumgarte)
|
||||
{
|
||||
float32 minSeparation = 0.0f;
|
||||
|
||||
for (int32 i = 0; i < m_constraintCount; ++i)
|
||||
{
|
||||
b2ContactConstraint* c = m_constraints + i;
|
||||
b2Body* bodyA = c->bodyA;
|
||||
b2Body* bodyB = c->bodyB;
|
||||
|
||||
float32 invMassA = bodyA->m_mass * bodyA->m_invMass;
|
||||
float32 invIA = bodyA->m_mass * bodyA->m_invI;
|
||||
float32 invMassB = bodyB->m_mass * bodyB->m_invMass;
|
||||
float32 invIB = bodyB->m_mass * bodyB->m_invI;
|
||||
|
||||
// Solve normal constraints
|
||||
for (int32 j = 0; j < c->pointCount; ++j)
|
||||
{
|
||||
b2PositionSolverManifold psm;
|
||||
psm.Initialize(c, j);
|
||||
b2Vec2 normal = psm.normal;
|
||||
|
||||
b2Vec2 point = psm.point;
|
||||
float32 separation = psm.separation;
|
||||
|
||||
b2Vec2 rA = point - bodyA->m_sweep.c;
|
||||
b2Vec2 rB = point - bodyB->m_sweep.c;
|
||||
|
||||
// Track max constraint error.
|
||||
minSeparation = b2Min(minSeparation, separation);
|
||||
|
||||
// Prevent large corrections and allow slop.
|
||||
float32 C = b2Clamp(baumgarte * (separation + b2_linearSlop), -b2_maxLinearCorrection, 0.0f);
|
||||
|
||||
// Compute the effective mass.
|
||||
float32 rnA = b2Cross(rA, normal);
|
||||
float32 rnB = b2Cross(rB, normal);
|
||||
float32 K = invMassA + invMassB + invIA * rnA * rnA + invIB * rnB * rnB;
|
||||
|
||||
// Compute normal impulse
|
||||
float32 impulse = K > 0.0f ? - C / K : 0.0f;
|
||||
|
||||
b2Vec2 P = impulse * normal;
|
||||
|
||||
bodyA->m_sweep.c -= invMassA * P;
|
||||
bodyA->m_sweep.a -= invIA * b2Cross(rA, P);
|
||||
bodyA->SynchronizeTransform();
|
||||
|
||||
bodyB->m_sweep.c += invMassB * P;
|
||||
bodyB->m_sweep.a += invIB * b2Cross(rB, P);
|
||||
bodyB->SynchronizeTransform();
|
||||
}
|
||||
}
|
||||
|
||||
// We can't expect minSpeparation >= -b2_linearSlop because we don't
|
||||
// push the separation above -b2_linearSlop.
|
||||
return minSeparation >= -1.5f * b2_linearSlop;
|
||||
}
|
||||
78
AndEngine/jni/Box2D/Dynamics/Contacts/b2ContactSolver.h
Normal file
78
AndEngine/jni/Box2D/Dynamics/Contacts/b2ContactSolver.h
Normal file
@@ -0,0 +1,78 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef B2_CONTACT_SOLVER_H
|
||||
#define B2_CONTACT_SOLVER_H
|
||||
|
||||
#include "Box2D/Common/b2Math.h"
|
||||
#include "Box2D/Collision/b2Collision.h"
|
||||
#include "Box2D/Dynamics/b2Island.h"
|
||||
|
||||
class b2Contact;
|
||||
class b2Body;
|
||||
class b2StackAllocator;
|
||||
|
||||
struct b2ContactConstraintPoint
|
||||
{
|
||||
b2Vec2 localPoint;
|
||||
b2Vec2 rA;
|
||||
b2Vec2 rB;
|
||||
float32 normalImpulse;
|
||||
float32 tangentImpulse;
|
||||
float32 normalMass;
|
||||
float32 tangentMass;
|
||||
float32 velocityBias;
|
||||
};
|
||||
|
||||
struct b2ContactConstraint
|
||||
{
|
||||
b2ContactConstraintPoint points[b2_maxManifoldPoints];
|
||||
b2Vec2 localNormal;
|
||||
b2Vec2 localPoint;
|
||||
b2Vec2 normal;
|
||||
b2Mat22 normalMass;
|
||||
b2Mat22 K;
|
||||
b2Body* bodyA;
|
||||
b2Body* bodyB;
|
||||
b2Manifold::Type type;
|
||||
float32 radius;
|
||||
float32 friction;
|
||||
int32 pointCount;
|
||||
b2Manifold* manifold;
|
||||
};
|
||||
|
||||
class b2ContactSolver
|
||||
{
|
||||
public:
|
||||
b2ContactSolver(b2Contact** contacts, int32 contactCount,
|
||||
b2StackAllocator* allocator, float32 impulseRatio);
|
||||
|
||||
~b2ContactSolver();
|
||||
|
||||
void WarmStart();
|
||||
void SolveVelocityConstraints();
|
||||
void StoreImpulses();
|
||||
|
||||
bool SolvePositionConstraints(float32 baumgarte);
|
||||
|
||||
b2StackAllocator* m_allocator;
|
||||
b2ContactConstraint* m_constraints;
|
||||
int m_constraintCount;
|
||||
};
|
||||
|
||||
#endif
|
||||
@@ -0,0 +1,52 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#include "Box2D/Dynamics/Contacts/b2PolygonAndCircleContact.h"
|
||||
#include "Box2D/Common/b2BlockAllocator.h"
|
||||
#include "Box2D/Collision/b2TimeOfImpact.h"
|
||||
#include "Box2D/Dynamics/b2Body.h"
|
||||
#include "Box2D/Dynamics/b2Fixture.h"
|
||||
#include "Box2D/Dynamics/b2WorldCallbacks.h"
|
||||
|
||||
#include <new>
|
||||
|
||||
b2Contact* b2PolygonAndCircleContact::Create(b2Fixture* fixtureA, b2Fixture* fixtureB, b2BlockAllocator* allocator)
|
||||
{
|
||||
void* mem = allocator->Allocate(sizeof(b2PolygonAndCircleContact));
|
||||
return new (mem) b2PolygonAndCircleContact(fixtureA, fixtureB);
|
||||
}
|
||||
|
||||
void b2PolygonAndCircleContact::Destroy(b2Contact* contact, b2BlockAllocator* allocator)
|
||||
{
|
||||
((b2PolygonAndCircleContact*)contact)->~b2PolygonAndCircleContact();
|
||||
allocator->Free(contact, sizeof(b2PolygonAndCircleContact));
|
||||
}
|
||||
|
||||
b2PolygonAndCircleContact::b2PolygonAndCircleContact(b2Fixture* fixtureA, b2Fixture* fixtureB)
|
||||
: b2Contact(fixtureA, fixtureB)
|
||||
{
|
||||
b2Assert(m_fixtureA->GetType() == b2Shape::e_polygon);
|
||||
b2Assert(m_fixtureB->GetType() == b2Shape::e_circle);
|
||||
}
|
||||
|
||||
void b2PolygonAndCircleContact::Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB)
|
||||
{
|
||||
b2CollidePolygonAndCircle( manifold,
|
||||
(b2PolygonShape*)m_fixtureA->GetShape(), xfA,
|
||||
(b2CircleShape*)m_fixtureB->GetShape(), xfB);
|
||||
}
|
||||
@@ -0,0 +1,38 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef B2_POLYGON_AND_CIRCLE_CONTACT_H
|
||||
#define B2_POLYGON_AND_CIRCLE_CONTACT_H
|
||||
|
||||
#include "Box2D/Dynamics/Contacts/b2Contact.h"
|
||||
|
||||
class b2BlockAllocator;
|
||||
|
||||
class b2PolygonAndCircleContact : public b2Contact
|
||||
{
|
||||
public:
|
||||
static b2Contact* Create(b2Fixture* fixtureA, b2Fixture* fixtureB, b2BlockAllocator* allocator);
|
||||
static void Destroy(b2Contact* contact, b2BlockAllocator* allocator);
|
||||
|
||||
b2PolygonAndCircleContact(b2Fixture* fixtureA, b2Fixture* fixtureB);
|
||||
~b2PolygonAndCircleContact() {}
|
||||
|
||||
void Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB);
|
||||
};
|
||||
|
||||
#endif
|
||||
52
AndEngine/jni/Box2D/Dynamics/Contacts/b2PolygonContact.cpp
Normal file
52
AndEngine/jni/Box2D/Dynamics/Contacts/b2PolygonContact.cpp
Normal file
@@ -0,0 +1,52 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#include "Box2D/Dynamics/Contacts/b2PolygonContact.h"
|
||||
#include "Box2D/Common/b2BlockAllocator.h"
|
||||
#include "Box2D/Collision/b2TimeOfImpact.h"
|
||||
#include "Box2D/Dynamics/b2Body.h"
|
||||
#include "Box2D/Dynamics/b2Fixture.h"
|
||||
#include "Box2D/Dynamics/b2WorldCallbacks.h"
|
||||
|
||||
#include <new>
|
||||
|
||||
b2Contact* b2PolygonContact::Create(b2Fixture* fixtureA, b2Fixture* fixtureB, b2BlockAllocator* allocator)
|
||||
{
|
||||
void* mem = allocator->Allocate(sizeof(b2PolygonContact));
|
||||
return new (mem) b2PolygonContact(fixtureA, fixtureB);
|
||||
}
|
||||
|
||||
void b2PolygonContact::Destroy(b2Contact* contact, b2BlockAllocator* allocator)
|
||||
{
|
||||
((b2PolygonContact*)contact)->~b2PolygonContact();
|
||||
allocator->Free(contact, sizeof(b2PolygonContact));
|
||||
}
|
||||
|
||||
b2PolygonContact::b2PolygonContact(b2Fixture* fixtureA, b2Fixture* fixtureB)
|
||||
: b2Contact(fixtureA, fixtureB)
|
||||
{
|
||||
b2Assert(m_fixtureA->GetType() == b2Shape::e_polygon);
|
||||
b2Assert(m_fixtureB->GetType() == b2Shape::e_polygon);
|
||||
}
|
||||
|
||||
void b2PolygonContact::Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB)
|
||||
{
|
||||
b2CollidePolygons( manifold,
|
||||
(b2PolygonShape*)m_fixtureA->GetShape(), xfA,
|
||||
(b2PolygonShape*)m_fixtureB->GetShape(), xfB);
|
||||
}
|
||||
38
AndEngine/jni/Box2D/Dynamics/Contacts/b2PolygonContact.h
Normal file
38
AndEngine/jni/Box2D/Dynamics/Contacts/b2PolygonContact.h
Normal file
@@ -0,0 +1,38 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef B2_POLYGON_CONTACT_H
|
||||
#define B2_POLYGON_CONTACT_H
|
||||
|
||||
#include "Box2D/Dynamics/Contacts/b2Contact.h"
|
||||
|
||||
class b2BlockAllocator;
|
||||
|
||||
class b2PolygonContact : public b2Contact
|
||||
{
|
||||
public:
|
||||
static b2Contact* Create(b2Fixture* fixtureA, b2Fixture* fixtureB, b2BlockAllocator* allocator);
|
||||
static void Destroy(b2Contact* contact, b2BlockAllocator* allocator);
|
||||
|
||||
b2PolygonContact(b2Fixture* fixtureA, b2Fixture* fixtureB);
|
||||
~b2PolygonContact() {}
|
||||
|
||||
void Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB);
|
||||
};
|
||||
|
||||
#endif
|
||||
231
AndEngine/jni/Box2D/Dynamics/Contacts/b2TOISolver.cpp
Normal file
231
AndEngine/jni/Box2D/Dynamics/Contacts/b2TOISolver.cpp
Normal file
@@ -0,0 +1,231 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2010 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#include "Box2D/Dynamics/Contacts/b2TOISolver.h"
|
||||
#include "Box2D/Dynamics/Contacts/b2Contact.h"
|
||||
#include "Box2D/Dynamics/b2Body.h"
|
||||
#include "Box2D/Dynamics/b2Fixture.h"
|
||||
#include "Box2D/Common/b2StackAllocator.h"
|
||||
|
||||
struct b2TOIConstraint
|
||||
{
|
||||
b2Vec2 localPoints[b2_maxManifoldPoints];
|
||||
b2Vec2 localNormal;
|
||||
b2Vec2 localPoint;
|
||||
b2Manifold::Type type;
|
||||
float32 radius;
|
||||
int32 pointCount;
|
||||
b2Body* bodyA;
|
||||
b2Body* bodyB;
|
||||
};
|
||||
|
||||
b2TOISolver::b2TOISolver(b2StackAllocator* allocator)
|
||||
{
|
||||
m_allocator = allocator;
|
||||
m_constraints = NULL;
|
||||
m_count = NULL;
|
||||
m_toiBody = NULL;
|
||||
}
|
||||
|
||||
b2TOISolver::~b2TOISolver()
|
||||
{
|
||||
Clear();
|
||||
}
|
||||
|
||||
void b2TOISolver::Clear()
|
||||
{
|
||||
if (m_allocator && m_constraints)
|
||||
{
|
||||
m_allocator->Free(m_constraints);
|
||||
m_constraints = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
void b2TOISolver::Initialize(b2Contact** contacts, int32 count, b2Body* toiBody)
|
||||
{
|
||||
Clear();
|
||||
|
||||
m_count = count;
|
||||
m_toiBody = toiBody;
|
||||
|
||||
m_constraints = (b2TOIConstraint*) m_allocator->Allocate(m_count * sizeof(b2TOIConstraint));
|
||||
|
||||
for (int32 i = 0; i < m_count; ++i)
|
||||
{
|
||||
b2Contact* contact = contacts[i];
|
||||
|
||||
b2Fixture* fixtureA = contact->GetFixtureA();
|
||||
b2Fixture* fixtureB = contact->GetFixtureB();
|
||||
b2Shape* shapeA = fixtureA->GetShape();
|
||||
b2Shape* shapeB = fixtureB->GetShape();
|
||||
float32 radiusA = shapeA->m_radius;
|
||||
float32 radiusB = shapeB->m_radius;
|
||||
b2Body* bodyA = fixtureA->GetBody();
|
||||
b2Body* bodyB = fixtureB->GetBody();
|
||||
b2Manifold* manifold = contact->GetManifold();
|
||||
|
||||
b2Assert(manifold->pointCount > 0);
|
||||
|
||||
b2TOIConstraint* constraint = m_constraints + i;
|
||||
constraint->bodyA = bodyA;
|
||||
constraint->bodyB = bodyB;
|
||||
constraint->localNormal = manifold->localNormal;
|
||||
constraint->localPoint = manifold->localPoint;
|
||||
constraint->type = manifold->type;
|
||||
constraint->pointCount = manifold->pointCount;
|
||||
constraint->radius = radiusA + radiusB;
|
||||
|
||||
for (int32 j = 0; j < constraint->pointCount; ++j)
|
||||
{
|
||||
b2ManifoldPoint* cp = manifold->points + j;
|
||||
constraint->localPoints[j] = cp->localPoint;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct b2TOISolverManifold
|
||||
{
|
||||
void Initialize(b2TOIConstraint* cc, int32 index)
|
||||
{
|
||||
b2Assert(cc->pointCount > 0);
|
||||
|
||||
switch (cc->type)
|
||||
{
|
||||
case b2Manifold::e_circles:
|
||||
{
|
||||
b2Vec2 pointA = cc->bodyA->GetWorldPoint(cc->localPoint);
|
||||
b2Vec2 pointB = cc->bodyB->GetWorldPoint(cc->localPoints[0]);
|
||||
if (b2DistanceSquared(pointA, pointB) > b2_epsilon * b2_epsilon)
|
||||
{
|
||||
normal = pointB - pointA;
|
||||
normal.Normalize();
|
||||
}
|
||||
else
|
||||
{
|
||||
normal.Set(1.0f, 0.0f);
|
||||
}
|
||||
|
||||
point = 0.5f * (pointA + pointB);
|
||||
separation = b2Dot(pointB - pointA, normal) - cc->radius;
|
||||
}
|
||||
break;
|
||||
|
||||
case b2Manifold::e_faceA:
|
||||
{
|
||||
normal = cc->bodyA->GetWorldVector(cc->localNormal);
|
||||
b2Vec2 planePoint = cc->bodyA->GetWorldPoint(cc->localPoint);
|
||||
|
||||
b2Vec2 clipPoint = cc->bodyB->GetWorldPoint(cc->localPoints[index]);
|
||||
separation = b2Dot(clipPoint - planePoint, normal) - cc->radius;
|
||||
point = clipPoint;
|
||||
}
|
||||
break;
|
||||
|
||||
case b2Manifold::e_faceB:
|
||||
{
|
||||
normal = cc->bodyB->GetWorldVector(cc->localNormal);
|
||||
b2Vec2 planePoint = cc->bodyB->GetWorldPoint(cc->localPoint);
|
||||
|
||||
b2Vec2 clipPoint = cc->bodyA->GetWorldPoint(cc->localPoints[index]);
|
||||
separation = b2Dot(clipPoint - planePoint, normal) - cc->radius;
|
||||
point = clipPoint;
|
||||
|
||||
// Ensure normal points from A to B
|
||||
normal = -normal;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
b2Vec2 normal;
|
||||
b2Vec2 point;
|
||||
float32 separation;
|
||||
};
|
||||
|
||||
// Push out the toi body to provide clearance for further simulation.
|
||||
bool b2TOISolver::Solve(float32 baumgarte)
|
||||
{
|
||||
float32 minSeparation = 0.0f;
|
||||
|
||||
for (int32 i = 0; i < m_count; ++i)
|
||||
{
|
||||
b2TOIConstraint* c = m_constraints + i;
|
||||
b2Body* bodyA = c->bodyA;
|
||||
b2Body* bodyB = c->bodyB;
|
||||
|
||||
float32 massA = bodyA->m_mass;
|
||||
float32 massB = bodyB->m_mass;
|
||||
|
||||
// Only the TOI body should move.
|
||||
if (bodyA == m_toiBody)
|
||||
{
|
||||
massB = 0.0f;
|
||||
}
|
||||
else
|
||||
{
|
||||
massA = 0.0f;
|
||||
}
|
||||
|
||||
float32 invMassA = massA * bodyA->m_invMass;
|
||||
float32 invIA = massA * bodyA->m_invI;
|
||||
float32 invMassB = massB * bodyB->m_invMass;
|
||||
float32 invIB = massB * bodyB->m_invI;
|
||||
|
||||
// Solve normal constraints
|
||||
for (int32 j = 0; j < c->pointCount; ++j)
|
||||
{
|
||||
b2TOISolverManifold psm;
|
||||
psm.Initialize(c, j);
|
||||
b2Vec2 normal = psm.normal;
|
||||
|
||||
b2Vec2 point = psm.point;
|
||||
float32 separation = psm.separation;
|
||||
|
||||
b2Vec2 rA = point - bodyA->m_sweep.c;
|
||||
b2Vec2 rB = point - bodyB->m_sweep.c;
|
||||
|
||||
// Track max constraint error.
|
||||
minSeparation = b2Min(minSeparation, separation);
|
||||
|
||||
// Prevent large corrections and allow slop.
|
||||
float32 C = b2Clamp(baumgarte * (separation + b2_linearSlop), -b2_maxLinearCorrection, 0.0f);
|
||||
|
||||
// Compute the effective mass.
|
||||
float32 rnA = b2Cross(rA, normal);
|
||||
float32 rnB = b2Cross(rB, normal);
|
||||
float32 K = invMassA + invMassB + invIA * rnA * rnA + invIB * rnB * rnB;
|
||||
|
||||
// Compute normal impulse
|
||||
float32 impulse = K > 0.0f ? - C / K : 0.0f;
|
||||
|
||||
b2Vec2 P = impulse * normal;
|
||||
|
||||
bodyA->m_sweep.c -= invMassA * P;
|
||||
bodyA->m_sweep.a -= invIA * b2Cross(rA, P);
|
||||
bodyA->SynchronizeTransform();
|
||||
|
||||
bodyB->m_sweep.c += invMassB * P;
|
||||
bodyB->m_sweep.a += invIB * b2Cross(rB, P);
|
||||
bodyB->SynchronizeTransform();
|
||||
}
|
||||
}
|
||||
|
||||
// We can't expect minSpeparation >= -b2_linearSlop because we don't
|
||||
// push the separation above -b2_linearSlop.
|
||||
return minSeparation >= -1.5f * b2_linearSlop;
|
||||
}
|
||||
51
AndEngine/jni/Box2D/Dynamics/Contacts/b2TOISolver.h
Normal file
51
AndEngine/jni/Box2D/Dynamics/Contacts/b2TOISolver.h
Normal file
@@ -0,0 +1,51 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2010 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef B2_TOI_SOLVER_H
|
||||
#define B2_TOI_SOLVER_H
|
||||
|
||||
#include "Box2D/Common/b2Math.h"
|
||||
|
||||
class b2Contact;
|
||||
class b2Body;
|
||||
struct b2TOIConstraint;
|
||||
class b2StackAllocator;
|
||||
|
||||
/// This is a pure position solver for a single movable body in contact with
|
||||
/// multiple non-moving bodies.
|
||||
class b2TOISolver
|
||||
{
|
||||
public:
|
||||
b2TOISolver(b2StackAllocator* allocator);
|
||||
~b2TOISolver();
|
||||
|
||||
void Initialize(b2Contact** contacts, int32 contactCount, b2Body* toiBody);
|
||||
void Clear();
|
||||
|
||||
// Perform one solver iteration. Returns true if converged.
|
||||
bool Solve(float32 baumgarte);
|
||||
|
||||
private:
|
||||
|
||||
b2TOIConstraint* m_constraints;
|
||||
int32 m_count;
|
||||
b2Body* m_toiBody;
|
||||
b2StackAllocator* m_allocator;
|
||||
};
|
||||
|
||||
#endif
|
||||
211
AndEngine/jni/Box2D/Dynamics/Joints/b2DistanceJoint.cpp
Normal file
211
AndEngine/jni/Box2D/Dynamics/Joints/b2DistanceJoint.cpp
Normal file
@@ -0,0 +1,211 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#include "Box2D/Dynamics/Joints/b2DistanceJoint.h"
|
||||
#include "Box2D/Dynamics/b2Body.h"
|
||||
#include "Box2D/Dynamics/b2TimeStep.h"
|
||||
|
||||
// 1-D constrained system
|
||||
// m (v2 - v1) = lambda
|
||||
// v2 + (beta/h) * x1 + gamma * lambda = 0, gamma has units of inverse mass.
|
||||
// x2 = x1 + h * v2
|
||||
|
||||
// 1-D mass-damper-spring system
|
||||
// m (v2 - v1) + h * d * v2 + h * k *
|
||||
|
||||
// C = norm(p2 - p1) - L
|
||||
// u = (p2 - p1) / norm(p2 - p1)
|
||||
// Cdot = dot(u, v2 + cross(w2, r2) - v1 - cross(w1, r1))
|
||||
// J = [-u -cross(r1, u) u cross(r2, u)]
|
||||
// K = J * invM * JT
|
||||
// = invMass1 + invI1 * cross(r1, u)^2 + invMass2 + invI2 * cross(r2, u)^2
|
||||
|
||||
void b2DistanceJointDef::Initialize(b2Body* b1, b2Body* b2,
|
||||
const b2Vec2& anchor1, const b2Vec2& anchor2)
|
||||
{
|
||||
bodyA = b1;
|
||||
bodyB = b2;
|
||||
localAnchorA = bodyA->GetLocalPoint(anchor1);
|
||||
localAnchorB = bodyB->GetLocalPoint(anchor2);
|
||||
b2Vec2 d = anchor2 - anchor1;
|
||||
length = d.Length();
|
||||
}
|
||||
|
||||
|
||||
b2DistanceJoint::b2DistanceJoint(const b2DistanceJointDef* def)
|
||||
: b2Joint(def)
|
||||
{
|
||||
m_localAnchor1 = def->localAnchorA;
|
||||
m_localAnchor2 = def->localAnchorB;
|
||||
m_length = def->length;
|
||||
m_frequencyHz = def->frequencyHz;
|
||||
m_dampingRatio = def->dampingRatio;
|
||||
m_impulse = 0.0f;
|
||||
m_gamma = 0.0f;
|
||||
m_bias = 0.0f;
|
||||
}
|
||||
|
||||
void b2DistanceJoint::InitVelocityConstraints(const b2TimeStep& step)
|
||||
{
|
||||
b2Body* b1 = m_bodyA;
|
||||
b2Body* b2 = m_bodyB;
|
||||
|
||||
// Compute the effective mass matrix.
|
||||
b2Vec2 r1 = b2Mul(b1->GetTransform().R, m_localAnchor1 - b1->GetLocalCenter());
|
||||
b2Vec2 r2 = b2Mul(b2->GetTransform().R, m_localAnchor2 - b2->GetLocalCenter());
|
||||
m_u = b2->m_sweep.c + r2 - b1->m_sweep.c - r1;
|
||||
|
||||
// Handle singularity.
|
||||
float32 length = m_u.Length();
|
||||
if (length > b2_linearSlop)
|
||||
{
|
||||
m_u *= 1.0f / length;
|
||||
}
|
||||
else
|
||||
{
|
||||
m_u.Set(0.0f, 0.0f);
|
||||
}
|
||||
|
||||
float32 cr1u = b2Cross(r1, m_u);
|
||||
float32 cr2u = b2Cross(r2, m_u);
|
||||
float32 invMass = b1->m_invMass + b1->m_invI * cr1u * cr1u + b2->m_invMass + b2->m_invI * cr2u * cr2u;
|
||||
|
||||
m_mass = invMass != 0.0f ? 1.0f / invMass : 0.0f;
|
||||
|
||||
if (m_frequencyHz > 0.0f)
|
||||
{
|
||||
float32 C = length - m_length;
|
||||
|
||||
// Frequency
|
||||
float32 omega = 2.0f * b2_pi * m_frequencyHz;
|
||||
|
||||
// Damping coefficient
|
||||
float32 d = 2.0f * m_mass * m_dampingRatio * omega;
|
||||
|
||||
// Spring stiffness
|
||||
float32 k = m_mass * omega * omega;
|
||||
|
||||
// magic formulas
|
||||
m_gamma = step.dt * (d + step.dt * k);
|
||||
m_gamma = m_gamma != 0.0f ? 1.0f / m_gamma : 0.0f;
|
||||
m_bias = C * step.dt * k * m_gamma;
|
||||
|
||||
m_mass = invMass + m_gamma;
|
||||
m_mass = m_mass != 0.0f ? 1.0f / m_mass : 0.0f;
|
||||
}
|
||||
|
||||
if (step.warmStarting)
|
||||
{
|
||||
// Scale the impulse to support a variable time step.
|
||||
m_impulse *= step.dtRatio;
|
||||
|
||||
b2Vec2 P = m_impulse * m_u;
|
||||
b1->m_linearVelocity -= b1->m_invMass * P;
|
||||
b1->m_angularVelocity -= b1->m_invI * b2Cross(r1, P);
|
||||
b2->m_linearVelocity += b2->m_invMass * P;
|
||||
b2->m_angularVelocity += b2->m_invI * b2Cross(r2, P);
|
||||
}
|
||||
else
|
||||
{
|
||||
m_impulse = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
void b2DistanceJoint::SolveVelocityConstraints(const b2TimeStep& step)
|
||||
{
|
||||
B2_NOT_USED(step);
|
||||
|
||||
b2Body* b1 = m_bodyA;
|
||||
b2Body* b2 = m_bodyB;
|
||||
|
||||
b2Vec2 r1 = b2Mul(b1->GetTransform().R, m_localAnchor1 - b1->GetLocalCenter());
|
||||
b2Vec2 r2 = b2Mul(b2->GetTransform().R, m_localAnchor2 - b2->GetLocalCenter());
|
||||
|
||||
// Cdot = dot(u, v + cross(w, r))
|
||||
b2Vec2 v1 = b1->m_linearVelocity + b2Cross(b1->m_angularVelocity, r1);
|
||||
b2Vec2 v2 = b2->m_linearVelocity + b2Cross(b2->m_angularVelocity, r2);
|
||||
float32 Cdot = b2Dot(m_u, v2 - v1);
|
||||
|
||||
float32 impulse = -m_mass * (Cdot + m_bias + m_gamma * m_impulse);
|
||||
m_impulse += impulse;
|
||||
|
||||
b2Vec2 P = impulse * m_u;
|
||||
b1->m_linearVelocity -= b1->m_invMass * P;
|
||||
b1->m_angularVelocity -= b1->m_invI * b2Cross(r1, P);
|
||||
b2->m_linearVelocity += b2->m_invMass * P;
|
||||
b2->m_angularVelocity += b2->m_invI * b2Cross(r2, P);
|
||||
}
|
||||
|
||||
bool b2DistanceJoint::SolvePositionConstraints(float32 baumgarte)
|
||||
{
|
||||
B2_NOT_USED(baumgarte);
|
||||
|
||||
if (m_frequencyHz > 0.0f)
|
||||
{
|
||||
// There is no position correction for soft distance constraints.
|
||||
return true;
|
||||
}
|
||||
|
||||
b2Body* b1 = m_bodyA;
|
||||
b2Body* b2 = m_bodyB;
|
||||
|
||||
b2Vec2 r1 = b2Mul(b1->GetTransform().R, m_localAnchor1 - b1->GetLocalCenter());
|
||||
b2Vec2 r2 = b2Mul(b2->GetTransform().R, m_localAnchor2 - b2->GetLocalCenter());
|
||||
|
||||
b2Vec2 d = b2->m_sweep.c + r2 - b1->m_sweep.c - r1;
|
||||
|
||||
float32 length = d.Normalize();
|
||||
float32 C = length - m_length;
|
||||
C = b2Clamp(C, -b2_maxLinearCorrection, b2_maxLinearCorrection);
|
||||
|
||||
float32 impulse = -m_mass * C;
|
||||
m_u = d;
|
||||
b2Vec2 P = impulse * m_u;
|
||||
|
||||
b1->m_sweep.c -= b1->m_invMass * P;
|
||||
b1->m_sweep.a -= b1->m_invI * b2Cross(r1, P);
|
||||
b2->m_sweep.c += b2->m_invMass * P;
|
||||
b2->m_sweep.a += b2->m_invI * b2Cross(r2, P);
|
||||
|
||||
b1->SynchronizeTransform();
|
||||
b2->SynchronizeTransform();
|
||||
|
||||
return b2Abs(C) < b2_linearSlop;
|
||||
}
|
||||
|
||||
b2Vec2 b2DistanceJoint::GetAnchorA() const
|
||||
{
|
||||
return m_bodyA->GetWorldPoint(m_localAnchor1);
|
||||
}
|
||||
|
||||
b2Vec2 b2DistanceJoint::GetAnchorB() const
|
||||
{
|
||||
return m_bodyB->GetWorldPoint(m_localAnchor2);
|
||||
}
|
||||
|
||||
b2Vec2 b2DistanceJoint::GetReactionForce(float32 inv_dt) const
|
||||
{
|
||||
b2Vec2 F = (inv_dt * m_impulse) * m_u;
|
||||
return F;
|
||||
}
|
||||
|
||||
float32 b2DistanceJoint::GetReactionTorque(float32 inv_dt) const
|
||||
{
|
||||
B2_NOT_USED(inv_dt);
|
||||
return 0.0f;
|
||||
}
|
||||
140
AndEngine/jni/Box2D/Dynamics/Joints/b2DistanceJoint.h
Normal file
140
AndEngine/jni/Box2D/Dynamics/Joints/b2DistanceJoint.h
Normal file
@@ -0,0 +1,140 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef B2_DISTANCE_JOINT_H
|
||||
#define B2_DISTANCE_JOINT_H
|
||||
|
||||
#include "Box2D/Dynamics/Joints/b2Joint.h"
|
||||
|
||||
/// Distance joint definition. This requires defining an
|
||||
/// anchor point on both bodies and the non-zero length of the
|
||||
/// distance joint. The definition uses local anchor points
|
||||
/// so that the initial configuration can violate the constraint
|
||||
/// slightly. This helps when saving and loading a game.
|
||||
/// @warning Do not use a zero or short length.
|
||||
struct b2DistanceJointDef : public b2JointDef
|
||||
{
|
||||
b2DistanceJointDef()
|
||||
{
|
||||
type = e_distanceJoint;
|
||||
localAnchorA.Set(0.0f, 0.0f);
|
||||
localAnchorB.Set(0.0f, 0.0f);
|
||||
length = 1.0f;
|
||||
frequencyHz = 0.0f;
|
||||
dampingRatio = 0.0f;
|
||||
}
|
||||
|
||||
/// Initialize the bodies, anchors, and length using the world
|
||||
/// anchors.
|
||||
void Initialize(b2Body* bodyA, b2Body* bodyB,
|
||||
const b2Vec2& anchorA, const b2Vec2& anchorB);
|
||||
|
||||
/// The local anchor point relative to body1's origin.
|
||||
b2Vec2 localAnchorA;
|
||||
|
||||
/// The local anchor point relative to body2's origin.
|
||||
b2Vec2 localAnchorB;
|
||||
|
||||
/// The natural length between the anchor points.
|
||||
float32 length;
|
||||
|
||||
/// The mass-spring-damper frequency in Hertz.
|
||||
float32 frequencyHz;
|
||||
|
||||
/// The damping ratio. 0 = no damping, 1 = critical damping.
|
||||
float32 dampingRatio;
|
||||
};
|
||||
|
||||
/// A distance joint constrains two points on two bodies
|
||||
/// to remain at a fixed distance from each other. You can view
|
||||
/// this as a massless, rigid rod.
|
||||
class b2DistanceJoint : public b2Joint
|
||||
{
|
||||
public:
|
||||
|
||||
b2Vec2 GetAnchorA() const;
|
||||
b2Vec2 GetAnchorB() const;
|
||||
|
||||
b2Vec2 GetReactionForce(float32 inv_dt) const;
|
||||
float32 GetReactionTorque(float32 inv_dt) const;
|
||||
|
||||
/// Set/get the natural length.
|
||||
/// Manipulating the length can lead to non-physical behavior when the frequency is zero.
|
||||
void SetLength(float32 length);
|
||||
float32 GetLength() const;
|
||||
|
||||
// Set/get frequency in Hz.
|
||||
void SetFrequency(float32 hz);
|
||||
float32 GetFrequency() const;
|
||||
|
||||
// Set/get damping ratio.
|
||||
void SetDampingRatio(float32 ratio);
|
||||
float32 GetDampingRatio() const;
|
||||
|
||||
protected:
|
||||
|
||||
friend class b2Joint;
|
||||
b2DistanceJoint(const b2DistanceJointDef* data);
|
||||
|
||||
void InitVelocityConstraints(const b2TimeStep& step);
|
||||
void SolveVelocityConstraints(const b2TimeStep& step);
|
||||
bool SolvePositionConstraints(float32 baumgarte);
|
||||
|
||||
b2Vec2 m_localAnchor1;
|
||||
b2Vec2 m_localAnchor2;
|
||||
b2Vec2 m_u;
|
||||
float32 m_frequencyHz;
|
||||
float32 m_dampingRatio;
|
||||
float32 m_gamma;
|
||||
float32 m_bias;
|
||||
float32 m_impulse;
|
||||
float32 m_mass;
|
||||
float32 m_length;
|
||||
};
|
||||
|
||||
inline void b2DistanceJoint::SetLength(float32 length)
|
||||
{
|
||||
m_length = length;
|
||||
}
|
||||
|
||||
inline float32 b2DistanceJoint::GetLength() const
|
||||
{
|
||||
return m_length;
|
||||
}
|
||||
|
||||
inline void b2DistanceJoint::SetFrequency(float32 hz)
|
||||
{
|
||||
m_frequencyHz = hz;
|
||||
}
|
||||
|
||||
inline float32 b2DistanceJoint::GetFrequency() const
|
||||
{
|
||||
return m_frequencyHz;
|
||||
}
|
||||
|
||||
inline void b2DistanceJoint::SetDampingRatio(float32 ratio)
|
||||
{
|
||||
m_dampingRatio = ratio;
|
||||
}
|
||||
|
||||
inline float32 b2DistanceJoint::GetDampingRatio() const
|
||||
{
|
||||
return m_dampingRatio;
|
||||
}
|
||||
|
||||
#endif
|
||||
229
AndEngine/jni/Box2D/Dynamics/Joints/b2FrictionJoint.cpp
Normal file
229
AndEngine/jni/Box2D/Dynamics/Joints/b2FrictionJoint.cpp
Normal file
@@ -0,0 +1,229 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#include "Box2D/Dynamics/Joints/b2FrictionJoint.h"
|
||||
#include "Box2D/Dynamics/b2Body.h"
|
||||
#include "Box2D/Dynamics/b2TimeStep.h"
|
||||
|
||||
// Point-to-point constraint
|
||||
// Cdot = v2 - v1
|
||||
// = v2 + cross(w2, r2) - v1 - cross(w1, r1)
|
||||
// J = [-I -r1_skew I r2_skew ]
|
||||
// Identity used:
|
||||
// w k % (rx i + ry j) = w * (-ry i + rx j)
|
||||
|
||||
// Angle constraint
|
||||
// Cdot = w2 - w1
|
||||
// J = [0 0 -1 0 0 1]
|
||||
// K = invI1 + invI2
|
||||
|
||||
void b2FrictionJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor)
|
||||
{
|
||||
bodyA = bA;
|
||||
bodyB = bB;
|
||||
localAnchorA = bodyA->GetLocalPoint(anchor);
|
||||
localAnchorB = bodyB->GetLocalPoint(anchor);
|
||||
}
|
||||
|
||||
b2FrictionJoint::b2FrictionJoint(const b2FrictionJointDef* def)
|
||||
: b2Joint(def)
|
||||
{
|
||||
m_localAnchorA = def->localAnchorA;
|
||||
m_localAnchorB = def->localAnchorB;
|
||||
|
||||
m_linearImpulse.SetZero();
|
||||
m_angularImpulse = 0.0f;
|
||||
|
||||
m_maxForce = def->maxForce;
|
||||
m_maxTorque = def->maxTorque;
|
||||
}
|
||||
|
||||
void b2FrictionJoint::InitVelocityConstraints(const b2TimeStep& step)
|
||||
{
|
||||
b2Body* bA = m_bodyA;
|
||||
b2Body* bB = m_bodyB;
|
||||
|
||||
// Compute the effective mass matrix.
|
||||
b2Vec2 rA = b2Mul(bA->GetTransform().R, m_localAnchorA - bA->GetLocalCenter());
|
||||
b2Vec2 rB = b2Mul(bB->GetTransform().R, m_localAnchorB - bB->GetLocalCenter());
|
||||
|
||||
// J = [-I -r1_skew I r2_skew]
|
||||
// [ 0 -1 0 1]
|
||||
// r_skew = [-ry; rx]
|
||||
|
||||
// Matlab
|
||||
// K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB]
|
||||
// [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB]
|
||||
// [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB]
|
||||
|
||||
float32 mA = bA->m_invMass, mB = bB->m_invMass;
|
||||
float32 iA = bA->m_invI, iB = bB->m_invI;
|
||||
|
||||
b2Mat22 K1;
|
||||
K1.col1.x = mA + mB; K1.col2.x = 0.0f;
|
||||
K1.col1.y = 0.0f; K1.col2.y = mA + mB;
|
||||
|
||||
b2Mat22 K2;
|
||||
K2.col1.x = iA * rA.y * rA.y; K2.col2.x = -iA * rA.x * rA.y;
|
||||
K2.col1.y = -iA * rA.x * rA.y; K2.col2.y = iA * rA.x * rA.x;
|
||||
|
||||
b2Mat22 K3;
|
||||
K3.col1.x = iB * rB.y * rB.y; K3.col2.x = -iB * rB.x * rB.y;
|
||||
K3.col1.y = -iB * rB.x * rB.y; K3.col2.y = iB * rB.x * rB.x;
|
||||
|
||||
b2Mat22 K = K1 + K2 + K3;
|
||||
m_linearMass = K.GetInverse();
|
||||
|
||||
m_angularMass = iA + iB;
|
||||
if (m_angularMass > 0.0f)
|
||||
{
|
||||
m_angularMass = 1.0f / m_angularMass;
|
||||
}
|
||||
|
||||
if (step.warmStarting)
|
||||
{
|
||||
// Scale impulses to support a variable time step.
|
||||
m_linearImpulse *= step.dtRatio;
|
||||
m_angularImpulse *= step.dtRatio;
|
||||
|
||||
b2Vec2 P(m_linearImpulse.x, m_linearImpulse.y);
|
||||
|
||||
bA->m_linearVelocity -= mA * P;
|
||||
bA->m_angularVelocity -= iA * (b2Cross(rA, P) + m_angularImpulse);
|
||||
|
||||
bB->m_linearVelocity += mB * P;
|
||||
bB->m_angularVelocity += iB * (b2Cross(rB, P) + m_angularImpulse);
|
||||
}
|
||||
else
|
||||
{
|
||||
m_linearImpulse.SetZero();
|
||||
m_angularImpulse = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
void b2FrictionJoint::SolveVelocityConstraints(const b2TimeStep& step)
|
||||
{
|
||||
B2_NOT_USED(step);
|
||||
|
||||
b2Body* bA = m_bodyA;
|
||||
b2Body* bB = m_bodyB;
|
||||
|
||||
b2Vec2 vA = bA->m_linearVelocity;
|
||||
float32 wA = bA->m_angularVelocity;
|
||||
b2Vec2 vB = bB->m_linearVelocity;
|
||||
float32 wB = bB->m_angularVelocity;
|
||||
|
||||
float32 mA = bA->m_invMass, mB = bB->m_invMass;
|
||||
float32 iA = bA->m_invI, iB = bB->m_invI;
|
||||
|
||||
b2Vec2 rA = b2Mul(bA->GetTransform().R, m_localAnchorA - bA->GetLocalCenter());
|
||||
b2Vec2 rB = b2Mul(bB->GetTransform().R, m_localAnchorB - bB->GetLocalCenter());
|
||||
|
||||
// Solve angular friction
|
||||
{
|
||||
float32 Cdot = wB - wA;
|
||||
float32 impulse = -m_angularMass * Cdot;
|
||||
|
||||
float32 oldImpulse = m_angularImpulse;
|
||||
float32 maxImpulse = step.dt * m_maxTorque;
|
||||
m_angularImpulse = b2Clamp(m_angularImpulse + impulse, -maxImpulse, maxImpulse);
|
||||
impulse = m_angularImpulse - oldImpulse;
|
||||
|
||||
wA -= iA * impulse;
|
||||
wB += iB * impulse;
|
||||
}
|
||||
|
||||
// Solve linear friction
|
||||
{
|
||||
b2Vec2 Cdot = vB + b2Cross(wB, rB) - vA - b2Cross(wA, rA);
|
||||
|
||||
b2Vec2 impulse = -b2Mul(m_linearMass, Cdot);
|
||||
b2Vec2 oldImpulse = m_linearImpulse;
|
||||
m_linearImpulse += impulse;
|
||||
|
||||
float32 maxImpulse = step.dt * m_maxForce;
|
||||
|
||||
if (m_linearImpulse.LengthSquared() > maxImpulse * maxImpulse)
|
||||
{
|
||||
m_linearImpulse.Normalize();
|
||||
m_linearImpulse *= maxImpulse;
|
||||
}
|
||||
|
||||
impulse = m_linearImpulse - oldImpulse;
|
||||
|
||||
vA -= mA * impulse;
|
||||
wA -= iA * b2Cross(rA, impulse);
|
||||
|
||||
vB += mB * impulse;
|
||||
wB += iB * b2Cross(rB, impulse);
|
||||
}
|
||||
|
||||
bA->m_linearVelocity = vA;
|
||||
bA->m_angularVelocity = wA;
|
||||
bB->m_linearVelocity = vB;
|
||||
bB->m_angularVelocity = wB;
|
||||
}
|
||||
|
||||
bool b2FrictionJoint::SolvePositionConstraints(float32 baumgarte)
|
||||
{
|
||||
B2_NOT_USED(baumgarte);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
b2Vec2 b2FrictionJoint::GetAnchorA() const
|
||||
{
|
||||
return m_bodyA->GetWorldPoint(m_localAnchorA);
|
||||
}
|
||||
|
||||
b2Vec2 b2FrictionJoint::GetAnchorB() const
|
||||
{
|
||||
return m_bodyB->GetWorldPoint(m_localAnchorB);
|
||||
}
|
||||
|
||||
b2Vec2 b2FrictionJoint::GetReactionForce(float32 inv_dt) const
|
||||
{
|
||||
return inv_dt * m_linearImpulse;
|
||||
}
|
||||
|
||||
float32 b2FrictionJoint::GetReactionTorque(float32 inv_dt) const
|
||||
{
|
||||
return inv_dt * m_angularImpulse;
|
||||
}
|
||||
|
||||
void b2FrictionJoint::SetMaxForce(float32 force)
|
||||
{
|
||||
b2Assert(b2IsValid(force) && force >= 0.0f);
|
||||
m_maxForce = force;
|
||||
}
|
||||
|
||||
float32 b2FrictionJoint::GetMaxForce() const
|
||||
{
|
||||
return m_maxForce;
|
||||
}
|
||||
|
||||
void b2FrictionJoint::SetMaxTorque(float32 torque)
|
||||
{
|
||||
b2Assert(b2IsValid(torque) && torque >= 0.0f);
|
||||
m_maxTorque = torque;
|
||||
}
|
||||
|
||||
float32 b2FrictionJoint::GetMaxTorque() const
|
||||
{
|
||||
return m_maxTorque;
|
||||
}
|
||||
99
AndEngine/jni/Box2D/Dynamics/Joints/b2FrictionJoint.h
Normal file
99
AndEngine/jni/Box2D/Dynamics/Joints/b2FrictionJoint.h
Normal file
@@ -0,0 +1,99 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef B2_FRICTION_JOINT_H
|
||||
#define B2_FRICTION_JOINT_H
|
||||
|
||||
#include "Box2D/Dynamics/Joints/b2Joint.h"
|
||||
|
||||
/// Friction joint definition.
|
||||
struct b2FrictionJointDef : public b2JointDef
|
||||
{
|
||||
b2FrictionJointDef()
|
||||
{
|
||||
type = e_frictionJoint;
|
||||
localAnchorA.SetZero();
|
||||
localAnchorB.SetZero();
|
||||
maxForce = 0.0f;
|
||||
maxTorque = 0.0f;
|
||||
}
|
||||
|
||||
/// Initialize the bodies, anchors, axis, and reference angle using the world
|
||||
/// anchor and world axis.
|
||||
void Initialize(b2Body* bodyA, b2Body* bodyB, const b2Vec2& anchor);
|
||||
|
||||
/// The local anchor point relative to bodyA's origin.
|
||||
b2Vec2 localAnchorA;
|
||||
|
||||
/// The local anchor point relative to bodyB's origin.
|
||||
b2Vec2 localAnchorB;
|
||||
|
||||
/// The maximum friction force in N.
|
||||
float32 maxForce;
|
||||
|
||||
/// The maximum friction torque in N-m.
|
||||
float32 maxTorque;
|
||||
};
|
||||
|
||||
/// Friction joint. This is used for top-down friction.
|
||||
/// It provides 2D translational friction and angular friction.
|
||||
class b2FrictionJoint : public b2Joint
|
||||
{
|
||||
public:
|
||||
b2Vec2 GetAnchorA() const;
|
||||
b2Vec2 GetAnchorB() const;
|
||||
|
||||
b2Vec2 GetReactionForce(float32 inv_dt) const;
|
||||
float32 GetReactionTorque(float32 inv_dt) const;
|
||||
|
||||
/// Set the maximum friction force in N.
|
||||
void SetMaxForce(float32 force);
|
||||
|
||||
/// Get the maximum friction force in N.
|
||||
float32 GetMaxForce() const;
|
||||
|
||||
/// Set the maximum friction torque in N*m.
|
||||
void SetMaxTorque(float32 torque);
|
||||
|
||||
/// Get the maximum friction torque in N*m.
|
||||
float32 GetMaxTorque() const;
|
||||
|
||||
protected:
|
||||
|
||||
friend class b2Joint;
|
||||
|
||||
b2FrictionJoint(const b2FrictionJointDef* def);
|
||||
|
||||
void InitVelocityConstraints(const b2TimeStep& step);
|
||||
void SolveVelocityConstraints(const b2TimeStep& step);
|
||||
bool SolvePositionConstraints(float32 baumgarte);
|
||||
|
||||
b2Vec2 m_localAnchorA;
|
||||
b2Vec2 m_localAnchorB;
|
||||
|
||||
b2Mat22 m_linearMass;
|
||||
float32 m_angularMass;
|
||||
|
||||
b2Vec2 m_linearImpulse;
|
||||
float32 m_angularImpulse;
|
||||
|
||||
float32 m_maxForce;
|
||||
float32 m_maxTorque;
|
||||
};
|
||||
|
||||
#endif
|
||||
259
AndEngine/jni/Box2D/Dynamics/Joints/b2GearJoint.cpp
Normal file
259
AndEngine/jni/Box2D/Dynamics/Joints/b2GearJoint.cpp
Normal file
@@ -0,0 +1,259 @@
|
||||
/*
|
||||
* Copyright (c) 2007 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#include "Box2D/Dynamics/Joints/b2GearJoint.h"
|
||||
#include "Box2D/Dynamics/Joints/b2RevoluteJoint.h"
|
||||
#include "Box2D/Dynamics/Joints/b2PrismaticJoint.h"
|
||||
#include "Box2D/Dynamics/b2Body.h"
|
||||
#include "Box2D/Dynamics/b2TimeStep.h"
|
||||
|
||||
// Gear Joint:
|
||||
// C0 = (coordinate1 + ratio * coordinate2)_initial
|
||||
// C = C0 - (cordinate1 + ratio * coordinate2) = 0
|
||||
// Cdot = -(Cdot1 + ratio * Cdot2)
|
||||
// J = -[J1 ratio * J2]
|
||||
// K = J * invM * JT
|
||||
// = J1 * invM1 * J1T + ratio * ratio * J2 * invM2 * J2T
|
||||
//
|
||||
// Revolute:
|
||||
// coordinate = rotation
|
||||
// Cdot = angularVelocity
|
||||
// J = [0 0 1]
|
||||
// K = J * invM * JT = invI
|
||||
//
|
||||
// Prismatic:
|
||||
// coordinate = dot(p - pg, ug)
|
||||
// Cdot = dot(v + cross(w, r), ug)
|
||||
// J = [ug cross(r, ug)]
|
||||
// K = J * invM * JT = invMass + invI * cross(r, ug)^2
|
||||
|
||||
b2GearJoint::b2GearJoint(const b2GearJointDef* def)
|
||||
: b2Joint(def)
|
||||
{
|
||||
b2JointType type1 = def->joint1->GetType();
|
||||
b2JointType type2 = def->joint2->GetType();
|
||||
|
||||
b2Assert(type1 == e_revoluteJoint || type1 == e_prismaticJoint);
|
||||
b2Assert(type2 == e_revoluteJoint || type2 == e_prismaticJoint);
|
||||
b2Assert(def->joint1->GetBodyA()->GetType() == b2_staticBody);
|
||||
b2Assert(def->joint2->GetBodyA()->GetType() == b2_staticBody);
|
||||
|
||||
m_revolute1 = NULL;
|
||||
m_prismatic1 = NULL;
|
||||
m_revolute2 = NULL;
|
||||
m_prismatic2 = NULL;
|
||||
|
||||
float32 coordinate1, coordinate2;
|
||||
|
||||
m_ground1 = def->joint1->GetBodyA();
|
||||
m_bodyA = def->joint1->GetBodyB();
|
||||
if (type1 == e_revoluteJoint)
|
||||
{
|
||||
m_revolute1 = (b2RevoluteJoint*)def->joint1;
|
||||
m_groundAnchor1 = m_revolute1->m_localAnchor1;
|
||||
m_localAnchor1 = m_revolute1->m_localAnchor2;
|
||||
coordinate1 = m_revolute1->GetJointAngle();
|
||||
}
|
||||
else
|
||||
{
|
||||
m_prismatic1 = (b2PrismaticJoint*)def->joint1;
|
||||
m_groundAnchor1 = m_prismatic1->m_localAnchor1;
|
||||
m_localAnchor1 = m_prismatic1->m_localAnchor2;
|
||||
coordinate1 = m_prismatic1->GetJointTranslation();
|
||||
}
|
||||
|
||||
m_ground2 = def->joint2->GetBodyA();
|
||||
m_bodyB = def->joint2->GetBodyB();
|
||||
if (type2 == e_revoluteJoint)
|
||||
{
|
||||
m_revolute2 = (b2RevoluteJoint*)def->joint2;
|
||||
m_groundAnchor2 = m_revolute2->m_localAnchor1;
|
||||
m_localAnchor2 = m_revolute2->m_localAnchor2;
|
||||
coordinate2 = m_revolute2->GetJointAngle();
|
||||
}
|
||||
else
|
||||
{
|
||||
m_prismatic2 = (b2PrismaticJoint*)def->joint2;
|
||||
m_groundAnchor2 = m_prismatic2->m_localAnchor1;
|
||||
m_localAnchor2 = m_prismatic2->m_localAnchor2;
|
||||
coordinate2 = m_prismatic2->GetJointTranslation();
|
||||
}
|
||||
|
||||
m_ratio = def->ratio;
|
||||
|
||||
m_constant = coordinate1 + m_ratio * coordinate2;
|
||||
|
||||
m_impulse = 0.0f;
|
||||
}
|
||||
|
||||
void b2GearJoint::InitVelocityConstraints(const b2TimeStep& step)
|
||||
{
|
||||
b2Body* g1 = m_ground1;
|
||||
b2Body* g2 = m_ground2;
|
||||
b2Body* b1 = m_bodyA;
|
||||
b2Body* b2 = m_bodyB;
|
||||
|
||||
float32 K = 0.0f;
|
||||
m_J.SetZero();
|
||||
|
||||
if (m_revolute1)
|
||||
{
|
||||
m_J.angularA = -1.0f;
|
||||
K += b1->m_invI;
|
||||
}
|
||||
else
|
||||
{
|
||||
b2Vec2 ug = b2Mul(g1->GetTransform().R, m_prismatic1->m_localXAxis1);
|
||||
b2Vec2 r = b2Mul(b1->GetTransform().R, m_localAnchor1 - b1->GetLocalCenter());
|
||||
float32 crug = b2Cross(r, ug);
|
||||
m_J.linearA = -ug;
|
||||
m_J.angularA = -crug;
|
||||
K += b1->m_invMass + b1->m_invI * crug * crug;
|
||||
}
|
||||
|
||||
if (m_revolute2)
|
||||
{
|
||||
m_J.angularB = -m_ratio;
|
||||
K += m_ratio * m_ratio * b2->m_invI;
|
||||
}
|
||||
else
|
||||
{
|
||||
b2Vec2 ug = b2Mul(g2->GetTransform().R, m_prismatic2->m_localXAxis1);
|
||||
b2Vec2 r = b2Mul(b2->GetTransform().R, m_localAnchor2 - b2->GetLocalCenter());
|
||||
float32 crug = b2Cross(r, ug);
|
||||
m_J.linearB = -m_ratio * ug;
|
||||
m_J.angularB = -m_ratio * crug;
|
||||
K += m_ratio * m_ratio * (b2->m_invMass + b2->m_invI * crug * crug);
|
||||
}
|
||||
|
||||
// Compute effective mass.
|
||||
m_mass = K > 0.0f ? 1.0f / K : 0.0f;
|
||||
|
||||
if (step.warmStarting)
|
||||
{
|
||||
// Warm starting.
|
||||
b1->m_linearVelocity += b1->m_invMass * m_impulse * m_J.linearA;
|
||||
b1->m_angularVelocity += b1->m_invI * m_impulse * m_J.angularA;
|
||||
b2->m_linearVelocity += b2->m_invMass * m_impulse * m_J.linearB;
|
||||
b2->m_angularVelocity += b2->m_invI * m_impulse * m_J.angularB;
|
||||
}
|
||||
else
|
||||
{
|
||||
m_impulse = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
void b2GearJoint::SolveVelocityConstraints(const b2TimeStep& step)
|
||||
{
|
||||
B2_NOT_USED(step);
|
||||
|
||||
b2Body* b1 = m_bodyA;
|
||||
b2Body* b2 = m_bodyB;
|
||||
|
||||
float32 Cdot = m_J.Compute( b1->m_linearVelocity, b1->m_angularVelocity,
|
||||
b2->m_linearVelocity, b2->m_angularVelocity);
|
||||
|
||||
float32 impulse = m_mass * (-Cdot);
|
||||
m_impulse += impulse;
|
||||
|
||||
b1->m_linearVelocity += b1->m_invMass * impulse * m_J.linearA;
|
||||
b1->m_angularVelocity += b1->m_invI * impulse * m_J.angularA;
|
||||
b2->m_linearVelocity += b2->m_invMass * impulse * m_J.linearB;
|
||||
b2->m_angularVelocity += b2->m_invI * impulse * m_J.angularB;
|
||||
}
|
||||
|
||||
bool b2GearJoint::SolvePositionConstraints(float32 baumgarte)
|
||||
{
|
||||
B2_NOT_USED(baumgarte);
|
||||
|
||||
float32 linearError = 0.0f;
|
||||
|
||||
b2Body* b1 = m_bodyA;
|
||||
b2Body* b2 = m_bodyB;
|
||||
|
||||
float32 coordinate1, coordinate2;
|
||||
if (m_revolute1)
|
||||
{
|
||||
coordinate1 = m_revolute1->GetJointAngle();
|
||||
}
|
||||
else
|
||||
{
|
||||
coordinate1 = m_prismatic1->GetJointTranslation();
|
||||
}
|
||||
|
||||
if (m_revolute2)
|
||||
{
|
||||
coordinate2 = m_revolute2->GetJointAngle();
|
||||
}
|
||||
else
|
||||
{
|
||||
coordinate2 = m_prismatic2->GetJointTranslation();
|
||||
}
|
||||
|
||||
float32 C = m_constant - (coordinate1 + m_ratio * coordinate2);
|
||||
|
||||
float32 impulse = m_mass * (-C);
|
||||
|
||||
b1->m_sweep.c += b1->m_invMass * impulse * m_J.linearA;
|
||||
b1->m_sweep.a += b1->m_invI * impulse * m_J.angularA;
|
||||
b2->m_sweep.c += b2->m_invMass * impulse * m_J.linearB;
|
||||
b2->m_sweep.a += b2->m_invI * impulse * m_J.angularB;
|
||||
|
||||
b1->SynchronizeTransform();
|
||||
b2->SynchronizeTransform();
|
||||
|
||||
// TODO_ERIN not implemented
|
||||
return linearError < b2_linearSlop;
|
||||
}
|
||||
|
||||
b2Vec2 b2GearJoint::GetAnchorA() const
|
||||
{
|
||||
return m_bodyA->GetWorldPoint(m_localAnchor1);
|
||||
}
|
||||
|
||||
b2Vec2 b2GearJoint::GetAnchorB() const
|
||||
{
|
||||
return m_bodyB->GetWorldPoint(m_localAnchor2);
|
||||
}
|
||||
|
||||
b2Vec2 b2GearJoint::GetReactionForce(float32 inv_dt) const
|
||||
{
|
||||
// TODO_ERIN not tested
|
||||
b2Vec2 P = m_impulse * m_J.linearB;
|
||||
return inv_dt * P;
|
||||
}
|
||||
|
||||
float32 b2GearJoint::GetReactionTorque(float32 inv_dt) const
|
||||
{
|
||||
// TODO_ERIN not tested
|
||||
b2Vec2 r = b2Mul(m_bodyB->GetTransform().R, m_localAnchor2 - m_bodyB->GetLocalCenter());
|
||||
b2Vec2 P = m_impulse * m_J.linearB;
|
||||
float32 L = m_impulse * m_J.angularB - b2Cross(r, P);
|
||||
return inv_dt * L;
|
||||
}
|
||||
|
||||
void b2GearJoint::SetRatio(float32 ratio)
|
||||
{
|
||||
b2Assert(b2IsValid(ratio));
|
||||
m_ratio = ratio;
|
||||
}
|
||||
|
||||
float32 b2GearJoint::GetRatio() const
|
||||
{
|
||||
return m_ratio;
|
||||
}
|
||||
111
AndEngine/jni/Box2D/Dynamics/Joints/b2GearJoint.h
Normal file
111
AndEngine/jni/Box2D/Dynamics/Joints/b2GearJoint.h
Normal file
@@ -0,0 +1,111 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef B2_GEAR_JOINT_H
|
||||
#define B2_GEAR_JOINT_H
|
||||
|
||||
#include "Box2D/Dynamics/Joints/b2Joint.h"
|
||||
|
||||
class b2RevoluteJoint;
|
||||
class b2PrismaticJoint;
|
||||
|
||||
/// Gear joint definition. This definition requires two existing
|
||||
/// revolute or prismatic joints (any combination will work).
|
||||
/// The provided joints must attach a dynamic body to a static body.
|
||||
struct b2GearJointDef : public b2JointDef
|
||||
{
|
||||
b2GearJointDef()
|
||||
{
|
||||
type = e_gearJoint;
|
||||
joint1 = NULL;
|
||||
joint2 = NULL;
|
||||
ratio = 1.0f;
|
||||
}
|
||||
|
||||
/// The first revolute/prismatic joint attached to the gear joint.
|
||||
b2Joint* joint1;
|
||||
|
||||
/// The second revolute/prismatic joint attached to the gear joint.
|
||||
b2Joint* joint2;
|
||||
|
||||
/// The gear ratio.
|
||||
/// @see b2GearJoint for explanation.
|
||||
float32 ratio;
|
||||
};
|
||||
|
||||
/// A gear joint is used to connect two joints together. Either joint
|
||||
/// can be a revolute or prismatic joint. You specify a gear ratio
|
||||
/// to bind the motions together:
|
||||
/// coordinate1 + ratio * coordinate2 = constant
|
||||
/// The ratio can be negative or positive. If one joint is a revolute joint
|
||||
/// and the other joint is a prismatic joint, then the ratio will have units
|
||||
/// of length or units of 1/length.
|
||||
/// @warning The revolute and prismatic joints must be attached to
|
||||
/// fixed bodies (which must be body1 on those joints).
|
||||
class b2GearJoint : public b2Joint
|
||||
{
|
||||
public:
|
||||
b2Vec2 GetAnchorA() const;
|
||||
b2Vec2 GetAnchorB() const;
|
||||
|
||||
b2Vec2 GetReactionForce(float32 inv_dt) const;
|
||||
float32 GetReactionTorque(float32 inv_dt) const;
|
||||
|
||||
/// Set/Get the gear ratio.
|
||||
void SetRatio(float32 ratio);
|
||||
float32 GetRatio() const;
|
||||
|
||||
protected:
|
||||
|
||||
friend class b2Joint;
|
||||
b2GearJoint(const b2GearJointDef* data);
|
||||
|
||||
void InitVelocityConstraints(const b2TimeStep& step);
|
||||
void SolveVelocityConstraints(const b2TimeStep& step);
|
||||
bool SolvePositionConstraints(float32 baumgarte);
|
||||
|
||||
b2Body* m_ground1;
|
||||
b2Body* m_ground2;
|
||||
|
||||
// One of these is NULL.
|
||||
b2RevoluteJoint* m_revolute1;
|
||||
b2PrismaticJoint* m_prismatic1;
|
||||
|
||||
// One of these is NULL.
|
||||
b2RevoluteJoint* m_revolute2;
|
||||
b2PrismaticJoint* m_prismatic2;
|
||||
|
||||
b2Vec2 m_groundAnchor1;
|
||||
b2Vec2 m_groundAnchor2;
|
||||
|
||||
b2Vec2 m_localAnchor1;
|
||||
b2Vec2 m_localAnchor2;
|
||||
|
||||
b2Jacobian m_J;
|
||||
|
||||
float32 m_constant;
|
||||
float32 m_ratio;
|
||||
|
||||
// Effective mass
|
||||
float32 m_mass;
|
||||
|
||||
// Impulse for accumulation/warm starting.
|
||||
float32 m_impulse;
|
||||
};
|
||||
|
||||
#endif
|
||||
186
AndEngine/jni/Box2D/Dynamics/Joints/b2Joint.cpp
Normal file
186
AndEngine/jni/Box2D/Dynamics/Joints/b2Joint.cpp
Normal file
@@ -0,0 +1,186 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#include "Box2D/Dynamics/Joints/b2Joint.h"
|
||||
#include "Box2D/Dynamics/Joints/b2DistanceJoint.h"
|
||||
#include "Box2D/Dynamics/Joints/b2LineJoint.h"
|
||||
#include "Box2D/Dynamics/Joints/b2MouseJoint.h"
|
||||
#include "Box2D/Dynamics/Joints/b2RevoluteJoint.h"
|
||||
#include "Box2D/Dynamics/Joints/b2PrismaticJoint.h"
|
||||
#include "Box2D/Dynamics/Joints/b2PulleyJoint.h"
|
||||
#include "Box2D/Dynamics/Joints/b2GearJoint.h"
|
||||
#include "Box2D/Dynamics/Joints/b2WeldJoint.h"
|
||||
#include "Box2D/Dynamics/Joints/b2FrictionJoint.h"
|
||||
#include "Box2D/Dynamics/b2Body.h"
|
||||
#include "Box2D/Dynamics/b2World.h"
|
||||
#include "Box2D/Common/b2BlockAllocator.h"
|
||||
|
||||
#include <new>
|
||||
|
||||
b2Joint* b2Joint::Create(const b2JointDef* def, b2BlockAllocator* allocator)
|
||||
{
|
||||
b2Joint* joint = NULL;
|
||||
|
||||
switch (def->type)
|
||||
{
|
||||
case e_distanceJoint:
|
||||
{
|
||||
void* mem = allocator->Allocate(sizeof(b2DistanceJoint));
|
||||
joint = new (mem) b2DistanceJoint((b2DistanceJointDef*)def);
|
||||
}
|
||||
break;
|
||||
|
||||
case e_mouseJoint:
|
||||
{
|
||||
void* mem = allocator->Allocate(sizeof(b2MouseJoint));
|
||||
joint = new (mem) b2MouseJoint((b2MouseJointDef*)def);
|
||||
}
|
||||
break;
|
||||
|
||||
case e_prismaticJoint:
|
||||
{
|
||||
void* mem = allocator->Allocate(sizeof(b2PrismaticJoint));
|
||||
joint = new (mem) b2PrismaticJoint((b2PrismaticJointDef*)def);
|
||||
}
|
||||
break;
|
||||
|
||||
case e_revoluteJoint:
|
||||
{
|
||||
void* mem = allocator->Allocate(sizeof(b2RevoluteJoint));
|
||||
joint = new (mem) b2RevoluteJoint((b2RevoluteJointDef*)def);
|
||||
}
|
||||
break;
|
||||
|
||||
case e_pulleyJoint:
|
||||
{
|
||||
void* mem = allocator->Allocate(sizeof(b2PulleyJoint));
|
||||
joint = new (mem) b2PulleyJoint((b2PulleyJointDef*)def);
|
||||
}
|
||||
break;
|
||||
|
||||
case e_gearJoint:
|
||||
{
|
||||
void* mem = allocator->Allocate(sizeof(b2GearJoint));
|
||||
joint = new (mem) b2GearJoint((b2GearJointDef*)def);
|
||||
}
|
||||
break;
|
||||
|
||||
case e_lineJoint:
|
||||
{
|
||||
void* mem = allocator->Allocate(sizeof(b2LineJoint));
|
||||
joint = new (mem) b2LineJoint((b2LineJointDef*)def);
|
||||
}
|
||||
break;
|
||||
|
||||
case e_weldJoint:
|
||||
{
|
||||
void* mem = allocator->Allocate(sizeof(b2WeldJoint));
|
||||
joint = new (mem) b2WeldJoint((b2WeldJointDef*)def);
|
||||
}
|
||||
break;
|
||||
|
||||
case e_frictionJoint:
|
||||
{
|
||||
void* mem = allocator->Allocate(sizeof(b2FrictionJoint));
|
||||
joint = new (mem) b2FrictionJoint((b2FrictionJointDef*)def);
|
||||
}
|
||||
break;
|
||||
|
||||
default:
|
||||
b2Assert(false);
|
||||
break;
|
||||
}
|
||||
|
||||
return joint;
|
||||
}
|
||||
|
||||
void b2Joint::Destroy(b2Joint* joint, b2BlockAllocator* allocator)
|
||||
{
|
||||
joint->~b2Joint();
|
||||
switch (joint->m_type)
|
||||
{
|
||||
case e_distanceJoint:
|
||||
allocator->Free(joint, sizeof(b2DistanceJoint));
|
||||
break;
|
||||
|
||||
case e_mouseJoint:
|
||||
allocator->Free(joint, sizeof(b2MouseJoint));
|
||||
break;
|
||||
|
||||
case e_prismaticJoint:
|
||||
allocator->Free(joint, sizeof(b2PrismaticJoint));
|
||||
break;
|
||||
|
||||
case e_revoluteJoint:
|
||||
allocator->Free(joint, sizeof(b2RevoluteJoint));
|
||||
break;
|
||||
|
||||
case e_pulleyJoint:
|
||||
allocator->Free(joint, sizeof(b2PulleyJoint));
|
||||
break;
|
||||
|
||||
case e_gearJoint:
|
||||
allocator->Free(joint, sizeof(b2GearJoint));
|
||||
break;
|
||||
|
||||
case e_lineJoint:
|
||||
allocator->Free(joint, sizeof(b2LineJoint));
|
||||
break;
|
||||
|
||||
case e_weldJoint:
|
||||
allocator->Free(joint, sizeof(b2WeldJoint));
|
||||
break;
|
||||
|
||||
case e_frictionJoint:
|
||||
allocator->Free(joint, sizeof(b2FrictionJoint));
|
||||
break;
|
||||
|
||||
default:
|
||||
b2Assert(false);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
b2Joint::b2Joint(const b2JointDef* def)
|
||||
{
|
||||
b2Assert(def->bodyA != def->bodyB);
|
||||
|
||||
m_type = def->type;
|
||||
m_prev = NULL;
|
||||
m_next = NULL;
|
||||
m_bodyA = def->bodyA;
|
||||
m_bodyB = def->bodyB;
|
||||
m_collideConnected = def->collideConnected;
|
||||
m_islandFlag = false;
|
||||
m_userData = def->userData;
|
||||
|
||||
m_edgeA.joint = NULL;
|
||||
m_edgeA.other = NULL;
|
||||
m_edgeA.prev = NULL;
|
||||
m_edgeA.next = NULL;
|
||||
|
||||
m_edgeB.joint = NULL;
|
||||
m_edgeB.other = NULL;
|
||||
m_edgeB.prev = NULL;
|
||||
m_edgeB.next = NULL;
|
||||
}
|
||||
|
||||
bool b2Joint::IsActive() const
|
||||
{
|
||||
return m_bodyA->IsActive() && m_bodyB->IsActive();
|
||||
}
|
||||
226
AndEngine/jni/Box2D/Dynamics/Joints/b2Joint.h
Normal file
226
AndEngine/jni/Box2D/Dynamics/Joints/b2Joint.h
Normal file
@@ -0,0 +1,226 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef B2_JOINT_H
|
||||
#define B2_JOINT_H
|
||||
|
||||
#include "Box2D/Common/b2Math.h"
|
||||
|
||||
class b2Body;
|
||||
class b2Joint;
|
||||
struct b2TimeStep;
|
||||
class b2BlockAllocator;
|
||||
|
||||
enum b2JointType
|
||||
{
|
||||
e_unknownJoint,
|
||||
e_revoluteJoint,
|
||||
e_prismaticJoint,
|
||||
e_distanceJoint,
|
||||
e_pulleyJoint,
|
||||
e_mouseJoint,
|
||||
e_gearJoint,
|
||||
e_lineJoint,
|
||||
e_weldJoint,
|
||||
e_frictionJoint,
|
||||
};
|
||||
|
||||
enum b2LimitState
|
||||
{
|
||||
e_inactiveLimit,
|
||||
e_atLowerLimit,
|
||||
e_atUpperLimit,
|
||||
e_equalLimits
|
||||
};
|
||||
|
||||
struct b2Jacobian
|
||||
{
|
||||
b2Vec2 linearA;
|
||||
float32 angularA;
|
||||
b2Vec2 linearB;
|
||||
float32 angularB;
|
||||
|
||||
void SetZero();
|
||||
void Set(const b2Vec2& x1, float32 a1, const b2Vec2& x2, float32 a2);
|
||||
float32 Compute(const b2Vec2& x1, float32 a1, const b2Vec2& x2, float32 a2);
|
||||
};
|
||||
|
||||
/// A joint edge is used to connect bodies and joints together
|
||||
/// in a joint graph where each body is a node and each joint
|
||||
/// is an edge. A joint edge belongs to a doubly linked list
|
||||
/// maintained in each attached body. Each joint has two joint
|
||||
/// nodes, one for each attached body.
|
||||
struct b2JointEdge
|
||||
{
|
||||
b2Body* other; ///< provides quick access to the other body attached.
|
||||
b2Joint* joint; ///< the joint
|
||||
b2JointEdge* prev; ///< the previous joint edge in the body's joint list
|
||||
b2JointEdge* next; ///< the next joint edge in the body's joint list
|
||||
};
|
||||
|
||||
/// Joint definitions are used to construct joints.
|
||||
struct b2JointDef
|
||||
{
|
||||
b2JointDef()
|
||||
{
|
||||
type = e_unknownJoint;
|
||||
userData = NULL;
|
||||
bodyA = NULL;
|
||||
bodyB = NULL;
|
||||
collideConnected = false;
|
||||
}
|
||||
|
||||
/// The joint type is set automatically for concrete joint types.
|
||||
b2JointType type;
|
||||
|
||||
/// Use this to attach application specific data to your joints.
|
||||
void* userData;
|
||||
|
||||
/// The first attached body.
|
||||
b2Body* bodyA;
|
||||
|
||||
/// The second attached body.
|
||||
b2Body* bodyB;
|
||||
|
||||
/// Set this flag to true if the attached bodies should collide.
|
||||
bool collideConnected;
|
||||
};
|
||||
|
||||
/// The base joint class. Joints are used to constraint two bodies together in
|
||||
/// various fashions. Some joints also feature limits and motors.
|
||||
class b2Joint
|
||||
{
|
||||
public:
|
||||
|
||||
/// Get the type of the concrete joint.
|
||||
b2JointType GetType() const;
|
||||
|
||||
/// Get the first body attached to this joint.
|
||||
b2Body* GetBodyA();
|
||||
|
||||
/// Get the second body attached to this joint.
|
||||
b2Body* GetBodyB();
|
||||
|
||||
/// Get the anchor point on bodyA in world coordinates.
|
||||
virtual b2Vec2 GetAnchorA() const = 0;
|
||||
|
||||
/// Get the anchor point on bodyB in world coordinates.
|
||||
virtual b2Vec2 GetAnchorB() const = 0;
|
||||
|
||||
/// Get the reaction force on body2 at the joint anchor in Newtons.
|
||||
virtual b2Vec2 GetReactionForce(float32 inv_dt) const = 0;
|
||||
|
||||
/// Get the reaction torque on body2 in N*m.
|
||||
virtual float32 GetReactionTorque(float32 inv_dt) const = 0;
|
||||
|
||||
/// Get the next joint the world joint list.
|
||||
b2Joint* GetNext();
|
||||
|
||||
/// Get the user data pointer.
|
||||
void* GetUserData() const;
|
||||
|
||||
/// Set the user data pointer.
|
||||
void SetUserData(void* data);
|
||||
|
||||
/// Short-cut function to determine if either body is inactive.
|
||||
bool IsActive() const;
|
||||
|
||||
protected:
|
||||
friend class b2World;
|
||||
friend class b2Body;
|
||||
friend class b2Island;
|
||||
|
||||
static b2Joint* Create(const b2JointDef* def, b2BlockAllocator* allocator);
|
||||
static void Destroy(b2Joint* joint, b2BlockAllocator* allocator);
|
||||
|
||||
b2Joint(const b2JointDef* def);
|
||||
virtual ~b2Joint() {}
|
||||
|
||||
virtual void InitVelocityConstraints(const b2TimeStep& step) = 0;
|
||||
virtual void SolveVelocityConstraints(const b2TimeStep& step) = 0;
|
||||
|
||||
// This returns true if the position errors are within tolerance.
|
||||
virtual bool SolvePositionConstraints(float32 baumgarte) = 0;
|
||||
|
||||
b2JointType m_type;
|
||||
b2Joint* m_prev;
|
||||
b2Joint* m_next;
|
||||
b2JointEdge m_edgeA;
|
||||
b2JointEdge m_edgeB;
|
||||
b2Body* m_bodyA;
|
||||
b2Body* m_bodyB;
|
||||
|
||||
bool m_islandFlag;
|
||||
bool m_collideConnected;
|
||||
|
||||
void* m_userData;
|
||||
|
||||
// Cache here per time step to reduce cache misses.
|
||||
b2Vec2 m_localCenterA, m_localCenterB;
|
||||
float32 m_invMassA, m_invIA;
|
||||
float32 m_invMassB, m_invIB;
|
||||
};
|
||||
|
||||
inline void b2Jacobian::SetZero()
|
||||
{
|
||||
linearA.SetZero(); angularA = 0.0f;
|
||||
linearB.SetZero(); angularB = 0.0f;
|
||||
}
|
||||
|
||||
inline void b2Jacobian::Set(const b2Vec2& x1, float32 a1, const b2Vec2& x2, float32 a2)
|
||||
{
|
||||
linearA = x1; angularA = a1;
|
||||
linearB = x2; angularB = a2;
|
||||
}
|
||||
|
||||
inline float32 b2Jacobian::Compute(const b2Vec2& x1, float32 a1, const b2Vec2& x2, float32 a2)
|
||||
{
|
||||
return b2Dot(linearA, x1) + angularA * a1 + b2Dot(linearB, x2) + angularB * a2;
|
||||
}
|
||||
|
||||
inline b2JointType b2Joint::GetType() const
|
||||
{
|
||||
return m_type;
|
||||
}
|
||||
|
||||
inline b2Body* b2Joint::GetBodyA()
|
||||
{
|
||||
return m_bodyA;
|
||||
}
|
||||
|
||||
inline b2Body* b2Joint::GetBodyB()
|
||||
{
|
||||
return m_bodyB;
|
||||
}
|
||||
|
||||
inline b2Joint* b2Joint::GetNext()
|
||||
{
|
||||
return m_next;
|
||||
}
|
||||
|
||||
inline void* b2Joint::GetUserData() const
|
||||
{
|
||||
return m_userData;
|
||||
}
|
||||
|
||||
inline void b2Joint::SetUserData(void* data)
|
||||
{
|
||||
m_userData = data;
|
||||
}
|
||||
|
||||
#endif
|
||||
591
AndEngine/jni/Box2D/Dynamics/Joints/b2LineJoint.cpp
Normal file
591
AndEngine/jni/Box2D/Dynamics/Joints/b2LineJoint.cpp
Normal file
@@ -0,0 +1,591 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#include "Box2D/Dynamics/Joints/b2LineJoint.h"
|
||||
#include "Box2D/Dynamics/b2Body.h"
|
||||
#include "Box2D/Dynamics/b2TimeStep.h"
|
||||
|
||||
// Linear constraint (point-to-line)
|
||||
// d = p2 - p1 = x2 + r2 - x1 - r1
|
||||
// C = dot(perp, d)
|
||||
// Cdot = dot(d, cross(w1, perp)) + dot(perp, v2 + cross(w2, r2) - v1 - cross(w1, r1))
|
||||
// = -dot(perp, v1) - dot(cross(d + r1, perp), w1) + dot(perp, v2) + dot(cross(r2, perp), v2)
|
||||
// J = [-perp, -cross(d + r1, perp), perp, cross(r2,perp)]
|
||||
//
|
||||
// K = J * invM * JT
|
||||
//
|
||||
// J = [-a -s1 a s2]
|
||||
// a = perp
|
||||
// s1 = cross(d + r1, a) = cross(p2 - x1, a)
|
||||
// s2 = cross(r2, a) = cross(p2 - x2, a)
|
||||
|
||||
|
||||
// Motor/Limit linear constraint
|
||||
// C = dot(ax1, d)
|
||||
// Cdot = = -dot(ax1, v1) - dot(cross(d + r1, ax1), w1) + dot(ax1, v2) + dot(cross(r2, ax1), v2)
|
||||
// J = [-ax1 -cross(d+r1,ax1) ax1 cross(r2,ax1)]
|
||||
|
||||
// Block Solver
|
||||
// We develop a block solver that includes the joint limit. This makes the limit stiff (inelastic) even
|
||||
// when the mass has poor distribution (leading to large torques about the joint anchor points).
|
||||
//
|
||||
// The Jacobian has 3 rows:
|
||||
// J = [-uT -s1 uT s2] // linear
|
||||
// [-vT -a1 vT a2] // limit
|
||||
//
|
||||
// u = perp
|
||||
// v = axis
|
||||
// s1 = cross(d + r1, u), s2 = cross(r2, u)
|
||||
// a1 = cross(d + r1, v), a2 = cross(r2, v)
|
||||
|
||||
// M * (v2 - v1) = JT * df
|
||||
// J * v2 = bias
|
||||
//
|
||||
// v2 = v1 + invM * JT * df
|
||||
// J * (v1 + invM * JT * df) = bias
|
||||
// K * df = bias - J * v1 = -Cdot
|
||||
// K = J * invM * JT
|
||||
// Cdot = J * v1 - bias
|
||||
//
|
||||
// Now solve for f2.
|
||||
// df = f2 - f1
|
||||
// K * (f2 - f1) = -Cdot
|
||||
// f2 = invK * (-Cdot) + f1
|
||||
//
|
||||
// Clamp accumulated limit impulse.
|
||||
// lower: f2(2) = max(f2(2), 0)
|
||||
// upper: f2(2) = min(f2(2), 0)
|
||||
//
|
||||
// Solve for correct f2(1)
|
||||
// K(1,1) * f2(1) = -Cdot(1) - K(1,2) * f2(2) + K(1,1:2) * f1
|
||||
// = -Cdot(1) - K(1,2) * f2(2) + K(1,1) * f1(1) + K(1,2) * f1(2)
|
||||
// K(1,1) * f2(1) = -Cdot(1) - K(1,2) * (f2(2) - f1(2)) + K(1,1) * f1(1)
|
||||
// f2(1) = invK(1,1) * (-Cdot(1) - K(1,2) * (f2(2) - f1(2))) + f1(1)
|
||||
//
|
||||
// Now compute impulse to be applied:
|
||||
// df = f2 - f1
|
||||
|
||||
void b2LineJointDef::Initialize(b2Body* b1, b2Body* b2, const b2Vec2& anchor, const b2Vec2& axis)
|
||||
{
|
||||
bodyA = b1;
|
||||
bodyB = b2;
|
||||
localAnchorA = bodyA->GetLocalPoint(anchor);
|
||||
localAnchorB = bodyB->GetLocalPoint(anchor);
|
||||
localAxisA = bodyA->GetLocalVector(axis);
|
||||
}
|
||||
|
||||
b2LineJoint::b2LineJoint(const b2LineJointDef* def)
|
||||
: b2Joint(def)
|
||||
{
|
||||
m_localAnchor1 = def->localAnchorA;
|
||||
m_localAnchor2 = def->localAnchorB;
|
||||
m_localXAxis1 = def->localAxisA;
|
||||
m_localYAxis1 = b2Cross(1.0f, m_localXAxis1);
|
||||
|
||||
m_impulse.SetZero();
|
||||
m_motorMass = 0.0;
|
||||
m_motorImpulse = 0.0f;
|
||||
|
||||
m_lowerTranslation = def->lowerTranslation;
|
||||
m_upperTranslation = def->upperTranslation;
|
||||
m_maxMotorForce = def->maxMotorForce;
|
||||
m_motorSpeed = def->motorSpeed;
|
||||
m_enableLimit = def->enableLimit;
|
||||
m_enableMotor = def->enableMotor;
|
||||
m_limitState = e_inactiveLimit;
|
||||
|
||||
m_axis.SetZero();
|
||||
m_perp.SetZero();
|
||||
}
|
||||
|
||||
void b2LineJoint::InitVelocityConstraints(const b2TimeStep& step)
|
||||
{
|
||||
b2Body* b1 = m_bodyA;
|
||||
b2Body* b2 = m_bodyB;
|
||||
|
||||
m_localCenterA = b1->GetLocalCenter();
|
||||
m_localCenterB = b2->GetLocalCenter();
|
||||
|
||||
b2Transform xf1 = b1->GetTransform();
|
||||
b2Transform xf2 = b2->GetTransform();
|
||||
|
||||
// Compute the effective masses.
|
||||
b2Vec2 r1 = b2Mul(xf1.R, m_localAnchor1 - m_localCenterA);
|
||||
b2Vec2 r2 = b2Mul(xf2.R, m_localAnchor2 - m_localCenterB);
|
||||
b2Vec2 d = b2->m_sweep.c + r2 - b1->m_sweep.c - r1;
|
||||
|
||||
m_invMassA = b1->m_invMass;
|
||||
m_invIA = b1->m_invI;
|
||||
m_invMassB = b2->m_invMass;
|
||||
m_invIB = b2->m_invI;
|
||||
|
||||
// Compute motor Jacobian and effective mass.
|
||||
{
|
||||
m_axis = b2Mul(xf1.R, m_localXAxis1);
|
||||
m_a1 = b2Cross(d + r1, m_axis);
|
||||
m_a2 = b2Cross(r2, m_axis);
|
||||
|
||||
m_motorMass = m_invMassA + m_invMassB + m_invIA * m_a1 * m_a1 + m_invIB * m_a2 * m_a2;
|
||||
if (m_motorMass > b2_epsilon)
|
||||
{
|
||||
m_motorMass = 1.0f / m_motorMass;
|
||||
}
|
||||
else
|
||||
{
|
||||
m_motorMass = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
// Prismatic constraint.
|
||||
{
|
||||
m_perp = b2Mul(xf1.R, m_localYAxis1);
|
||||
|
||||
m_s1 = b2Cross(d + r1, m_perp);
|
||||
m_s2 = b2Cross(r2, m_perp);
|
||||
|
||||
float32 m1 = m_invMassA, m2 = m_invMassB;
|
||||
float32 i1 = m_invIA, i2 = m_invIB;
|
||||
|
||||
float32 k11 = m1 + m2 + i1 * m_s1 * m_s1 + i2 * m_s2 * m_s2;
|
||||
float32 k12 = i1 * m_s1 * m_a1 + i2 * m_s2 * m_a2;
|
||||
float32 k22 = m1 + m2 + i1 * m_a1 * m_a1 + i2 * m_a2 * m_a2;
|
||||
|
||||
m_K.col1.Set(k11, k12);
|
||||
m_K.col2.Set(k12, k22);
|
||||
}
|
||||
|
||||
// Compute motor and limit terms.
|
||||
if (m_enableLimit)
|
||||
{
|
||||
float32 jointTranslation = b2Dot(m_axis, d);
|
||||
if (b2Abs(m_upperTranslation - m_lowerTranslation) < 2.0f * b2_linearSlop)
|
||||
{
|
||||
m_limitState = e_equalLimits;
|
||||
}
|
||||
else if (jointTranslation <= m_lowerTranslation)
|
||||
{
|
||||
if (m_limitState != e_atLowerLimit)
|
||||
{
|
||||
m_limitState = e_atLowerLimit;
|
||||
m_impulse.y = 0.0f;
|
||||
}
|
||||
}
|
||||
else if (jointTranslation >= m_upperTranslation)
|
||||
{
|
||||
if (m_limitState != e_atUpperLimit)
|
||||
{
|
||||
m_limitState = e_atUpperLimit;
|
||||
m_impulse.y = 0.0f;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
m_limitState = e_inactiveLimit;
|
||||
m_impulse.y = 0.0f;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
m_limitState = e_inactiveLimit;
|
||||
}
|
||||
|
||||
if (m_enableMotor == false)
|
||||
{
|
||||
m_motorImpulse = 0.0f;
|
||||
}
|
||||
|
||||
if (step.warmStarting)
|
||||
{
|
||||
// Account for variable time step.
|
||||
m_impulse *= step.dtRatio;
|
||||
m_motorImpulse *= step.dtRatio;
|
||||
|
||||
b2Vec2 P = m_impulse.x * m_perp + (m_motorImpulse + m_impulse.y) * m_axis;
|
||||
float32 L1 = m_impulse.x * m_s1 + (m_motorImpulse + m_impulse.y) * m_a1;
|
||||
float32 L2 = m_impulse.x * m_s2 + (m_motorImpulse + m_impulse.y) * m_a2;
|
||||
|
||||
b1->m_linearVelocity -= m_invMassA * P;
|
||||
b1->m_angularVelocity -= m_invIA * L1;
|
||||
|
||||
b2->m_linearVelocity += m_invMassB * P;
|
||||
b2->m_angularVelocity += m_invIB * L2;
|
||||
}
|
||||
else
|
||||
{
|
||||
m_impulse.SetZero();
|
||||
m_motorImpulse = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
void b2LineJoint::SolveVelocityConstraints(const b2TimeStep& step)
|
||||
{
|
||||
b2Body* b1 = m_bodyA;
|
||||
b2Body* b2 = m_bodyB;
|
||||
|
||||
b2Vec2 v1 = b1->m_linearVelocity;
|
||||
float32 w1 = b1->m_angularVelocity;
|
||||
b2Vec2 v2 = b2->m_linearVelocity;
|
||||
float32 w2 = b2->m_angularVelocity;
|
||||
|
||||
// Solve linear motor constraint.
|
||||
if (m_enableMotor && m_limitState != e_equalLimits)
|
||||
{
|
||||
float32 Cdot = b2Dot(m_axis, v2 - v1) + m_a2 * w2 - m_a1 * w1;
|
||||
float32 impulse = m_motorMass * (m_motorSpeed - Cdot);
|
||||
float32 oldImpulse = m_motorImpulse;
|
||||
float32 maxImpulse = step.dt * m_maxMotorForce;
|
||||
m_motorImpulse = b2Clamp(m_motorImpulse + impulse, -maxImpulse, maxImpulse);
|
||||
impulse = m_motorImpulse - oldImpulse;
|
||||
|
||||
b2Vec2 P = impulse * m_axis;
|
||||
float32 L1 = impulse * m_a1;
|
||||
float32 L2 = impulse * m_a2;
|
||||
|
||||
v1 -= m_invMassA * P;
|
||||
w1 -= m_invIA * L1;
|
||||
|
||||
v2 += m_invMassB * P;
|
||||
w2 += m_invIB * L2;
|
||||
}
|
||||
|
||||
float32 Cdot1 = b2Dot(m_perp, v2 - v1) + m_s2 * w2 - m_s1 * w1;
|
||||
|
||||
if (m_enableLimit && m_limitState != e_inactiveLimit)
|
||||
{
|
||||
// Solve prismatic and limit constraint in block form.
|
||||
float32 Cdot2 = b2Dot(m_axis, v2 - v1) + m_a2 * w2 - m_a1 * w1;
|
||||
b2Vec2 Cdot(Cdot1, Cdot2);
|
||||
|
||||
b2Vec2 f1 = m_impulse;
|
||||
b2Vec2 df = m_K.Solve(-Cdot);
|
||||
m_impulse += df;
|
||||
|
||||
if (m_limitState == e_atLowerLimit)
|
||||
{
|
||||
m_impulse.y = b2Max(m_impulse.y, 0.0f);
|
||||
}
|
||||
else if (m_limitState == e_atUpperLimit)
|
||||
{
|
||||
m_impulse.y = b2Min(m_impulse.y, 0.0f);
|
||||
}
|
||||
|
||||
// f2(1) = invK(1,1) * (-Cdot(1) - K(1,2) * (f2(2) - f1(2))) + f1(1)
|
||||
float32 b = -Cdot1 - (m_impulse.y - f1.y) * m_K.col2.x;
|
||||
float32 f2r;
|
||||
if (m_K.col1.x != 0.0f)
|
||||
{
|
||||
f2r = b / m_K.col1.x + f1.x;
|
||||
}
|
||||
else
|
||||
{
|
||||
f2r = f1.x;
|
||||
}
|
||||
|
||||
m_impulse.x = f2r;
|
||||
|
||||
df = m_impulse - f1;
|
||||
|
||||
b2Vec2 P = df.x * m_perp + df.y * m_axis;
|
||||
float32 L1 = df.x * m_s1 + df.y * m_a1;
|
||||
float32 L2 = df.x * m_s2 + df.y * m_a2;
|
||||
|
||||
v1 -= m_invMassA * P;
|
||||
w1 -= m_invIA * L1;
|
||||
|
||||
v2 += m_invMassB * P;
|
||||
w2 += m_invIB * L2;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Limit is inactive, just solve the prismatic constraint in block form.
|
||||
float32 df;
|
||||
if (m_K.col1.x != 0.0f)
|
||||
{
|
||||
df = - Cdot1 / m_K.col1.x;
|
||||
}
|
||||
else
|
||||
{
|
||||
df = 0.0f;
|
||||
}
|
||||
m_impulse.x += df;
|
||||
|
||||
b2Vec2 P = df * m_perp;
|
||||
float32 L1 = df * m_s1;
|
||||
float32 L2 = df * m_s2;
|
||||
|
||||
v1 -= m_invMassA * P;
|
||||
w1 -= m_invIA * L1;
|
||||
|
||||
v2 += m_invMassB * P;
|
||||
w2 += m_invIB * L2;
|
||||
}
|
||||
|
||||
b1->m_linearVelocity = v1;
|
||||
b1->m_angularVelocity = w1;
|
||||
b2->m_linearVelocity = v2;
|
||||
b2->m_angularVelocity = w2;
|
||||
}
|
||||
|
||||
bool b2LineJoint::SolvePositionConstraints(float32 baumgarte)
|
||||
{
|
||||
B2_NOT_USED(baumgarte);
|
||||
|
||||
b2Body* b1 = m_bodyA;
|
||||
b2Body* b2 = m_bodyB;
|
||||
|
||||
b2Vec2 c1 = b1->m_sweep.c;
|
||||
float32 a1 = b1->m_sweep.a;
|
||||
|
||||
b2Vec2 c2 = b2->m_sweep.c;
|
||||
float32 a2 = b2->m_sweep.a;
|
||||
|
||||
// Solve linear limit constraint.
|
||||
float32 linearError = 0.0f, angularError = 0.0f;
|
||||
bool active = false;
|
||||
float32 C2 = 0.0f;
|
||||
|
||||
b2Mat22 R1(a1), R2(a2);
|
||||
|
||||
b2Vec2 r1 = b2Mul(R1, m_localAnchor1 - m_localCenterA);
|
||||
b2Vec2 r2 = b2Mul(R2, m_localAnchor2 - m_localCenterB);
|
||||
b2Vec2 d = c2 + r2 - c1 - r1;
|
||||
|
||||
if (m_enableLimit)
|
||||
{
|
||||
m_axis = b2Mul(R1, m_localXAxis1);
|
||||
|
||||
m_a1 = b2Cross(d + r1, m_axis);
|
||||
m_a2 = b2Cross(r2, m_axis);
|
||||
|
||||
float32 translation = b2Dot(m_axis, d);
|
||||
if (b2Abs(m_upperTranslation - m_lowerTranslation) < 2.0f * b2_linearSlop)
|
||||
{
|
||||
// Prevent large angular corrections
|
||||
C2 = b2Clamp(translation, -b2_maxLinearCorrection, b2_maxLinearCorrection);
|
||||
linearError = b2Abs(translation);
|
||||
active = true;
|
||||
}
|
||||
else if (translation <= m_lowerTranslation)
|
||||
{
|
||||
// Prevent large linear corrections and allow some slop.
|
||||
C2 = b2Clamp(translation - m_lowerTranslation + b2_linearSlop, -b2_maxLinearCorrection, 0.0f);
|
||||
linearError = m_lowerTranslation - translation;
|
||||
active = true;
|
||||
}
|
||||
else if (translation >= m_upperTranslation)
|
||||
{
|
||||
// Prevent large linear corrections and allow some slop.
|
||||
C2 = b2Clamp(translation - m_upperTranslation - b2_linearSlop, 0.0f, b2_maxLinearCorrection);
|
||||
linearError = translation - m_upperTranslation;
|
||||
active = true;
|
||||
}
|
||||
}
|
||||
|
||||
m_perp = b2Mul(R1, m_localYAxis1);
|
||||
|
||||
m_s1 = b2Cross(d + r1, m_perp);
|
||||
m_s2 = b2Cross(r2, m_perp);
|
||||
|
||||
b2Vec2 impulse;
|
||||
float32 C1;
|
||||
C1 = b2Dot(m_perp, d);
|
||||
|
||||
linearError = b2Max(linearError, b2Abs(C1));
|
||||
angularError = 0.0f;
|
||||
|
||||
if (active)
|
||||
{
|
||||
float32 m1 = m_invMassA, m2 = m_invMassB;
|
||||
float32 i1 = m_invIA, i2 = m_invIB;
|
||||
|
||||
float32 k11 = m1 + m2 + i1 * m_s1 * m_s1 + i2 * m_s2 * m_s2;
|
||||
float32 k12 = i1 * m_s1 * m_a1 + i2 * m_s2 * m_a2;
|
||||
float32 k22 = m1 + m2 + i1 * m_a1 * m_a1 + i2 * m_a2 * m_a2;
|
||||
|
||||
m_K.col1.Set(k11, k12);
|
||||
m_K.col2.Set(k12, k22);
|
||||
|
||||
b2Vec2 C;
|
||||
C.x = C1;
|
||||
C.y = C2;
|
||||
|
||||
impulse = m_K.Solve(-C);
|
||||
}
|
||||
else
|
||||
{
|
||||
float32 m1 = m_invMassA, m2 = m_invMassB;
|
||||
float32 i1 = m_invIA, i2 = m_invIB;
|
||||
|
||||
float32 k11 = m1 + m2 + i1 * m_s1 * m_s1 + i2 * m_s2 * m_s2;
|
||||
|
||||
float32 impulse1;
|
||||
if (k11 != 0.0f)
|
||||
{
|
||||
impulse1 = - C1 / k11;
|
||||
}
|
||||
else
|
||||
{
|
||||
impulse1 = 0.0f;
|
||||
}
|
||||
|
||||
impulse.x = impulse1;
|
||||
impulse.y = 0.0f;
|
||||
}
|
||||
|
||||
b2Vec2 P = impulse.x * m_perp + impulse.y * m_axis;
|
||||
float32 L1 = impulse.x * m_s1 + impulse.y * m_a1;
|
||||
float32 L2 = impulse.x * m_s2 + impulse.y * m_a2;
|
||||
|
||||
c1 -= m_invMassA * P;
|
||||
a1 -= m_invIA * L1;
|
||||
c2 += m_invMassB * P;
|
||||
a2 += m_invIB * L2;
|
||||
|
||||
// TODO_ERIN remove need for this.
|
||||
b1->m_sweep.c = c1;
|
||||
b1->m_sweep.a = a1;
|
||||
b2->m_sweep.c = c2;
|
||||
b2->m_sweep.a = a2;
|
||||
b1->SynchronizeTransform();
|
||||
b2->SynchronizeTransform();
|
||||
|
||||
return linearError <= b2_linearSlop && angularError <= b2_angularSlop;
|
||||
}
|
||||
|
||||
b2Vec2 b2LineJoint::GetAnchorA() const
|
||||
{
|
||||
return m_bodyA->GetWorldPoint(m_localAnchor1);
|
||||
}
|
||||
|
||||
b2Vec2 b2LineJoint::GetAnchorB() const
|
||||
{
|
||||
return m_bodyB->GetWorldPoint(m_localAnchor2);
|
||||
}
|
||||
|
||||
b2Vec2 b2LineJoint::GetReactionForce(float32 inv_dt) const
|
||||
{
|
||||
return inv_dt * (m_impulse.x * m_perp + (m_motorImpulse + m_impulse.y) * m_axis);
|
||||
}
|
||||
|
||||
float32 b2LineJoint::GetReactionTorque(float32 inv_dt) const
|
||||
{
|
||||
B2_NOT_USED(inv_dt);
|
||||
return 0.0f;
|
||||
}
|
||||
|
||||
float32 b2LineJoint::GetJointTranslation() const
|
||||
{
|
||||
b2Body* b1 = m_bodyA;
|
||||
b2Body* b2 = m_bodyB;
|
||||
|
||||
b2Vec2 p1 = b1->GetWorldPoint(m_localAnchor1);
|
||||
b2Vec2 p2 = b2->GetWorldPoint(m_localAnchor2);
|
||||
b2Vec2 d = p2 - p1;
|
||||
b2Vec2 axis = b1->GetWorldVector(m_localXAxis1);
|
||||
|
||||
float32 translation = b2Dot(d, axis);
|
||||
return translation;
|
||||
}
|
||||
|
||||
float32 b2LineJoint::GetJointSpeed() const
|
||||
{
|
||||
b2Body* b1 = m_bodyA;
|
||||
b2Body* b2 = m_bodyB;
|
||||
|
||||
b2Vec2 r1 = b2Mul(b1->GetTransform().R, m_localAnchor1 - b1->GetLocalCenter());
|
||||
b2Vec2 r2 = b2Mul(b2->GetTransform().R, m_localAnchor2 - b2->GetLocalCenter());
|
||||
b2Vec2 p1 = b1->m_sweep.c + r1;
|
||||
b2Vec2 p2 = b2->m_sweep.c + r2;
|
||||
b2Vec2 d = p2 - p1;
|
||||
b2Vec2 axis = b1->GetWorldVector(m_localXAxis1);
|
||||
|
||||
b2Vec2 v1 = b1->m_linearVelocity;
|
||||
b2Vec2 v2 = b2->m_linearVelocity;
|
||||
float32 w1 = b1->m_angularVelocity;
|
||||
float32 w2 = b2->m_angularVelocity;
|
||||
|
||||
float32 speed = b2Dot(d, b2Cross(w1, axis)) + b2Dot(axis, v2 + b2Cross(w2, r2) - v1 - b2Cross(w1, r1));
|
||||
return speed;
|
||||
}
|
||||
|
||||
bool b2LineJoint::IsLimitEnabled() const
|
||||
{
|
||||
return m_enableLimit;
|
||||
}
|
||||
|
||||
void b2LineJoint::EnableLimit(bool flag)
|
||||
{
|
||||
m_bodyA->SetAwake(true);
|
||||
m_bodyB->SetAwake(true);
|
||||
m_enableLimit = flag;
|
||||
}
|
||||
|
||||
float32 b2LineJoint::GetLowerLimit() const
|
||||
{
|
||||
return m_lowerTranslation;
|
||||
}
|
||||
|
||||
float32 b2LineJoint::GetUpperLimit() const
|
||||
{
|
||||
return m_upperTranslation;
|
||||
}
|
||||
|
||||
void b2LineJoint::SetLimits(float32 lower, float32 upper)
|
||||
{
|
||||
b2Assert(lower <= upper);
|
||||
m_bodyA->SetAwake(true);
|
||||
m_bodyB->SetAwake(true);
|
||||
m_lowerTranslation = lower;
|
||||
m_upperTranslation = upper;
|
||||
}
|
||||
|
||||
bool b2LineJoint::IsMotorEnabled() const
|
||||
{
|
||||
return m_enableMotor;
|
||||
}
|
||||
|
||||
void b2LineJoint::EnableMotor(bool flag)
|
||||
{
|
||||
m_bodyA->SetAwake(true);
|
||||
m_bodyB->SetAwake(true);
|
||||
m_enableMotor = flag;
|
||||
}
|
||||
|
||||
void b2LineJoint::SetMotorSpeed(float32 speed)
|
||||
{
|
||||
m_bodyA->SetAwake(true);
|
||||
m_bodyB->SetAwake(true);
|
||||
m_motorSpeed = speed;
|
||||
}
|
||||
|
||||
void b2LineJoint::SetMaxMotorForce(float32 force)
|
||||
{
|
||||
m_bodyA->SetAwake(true);
|
||||
m_bodyB->SetAwake(true);
|
||||
m_maxMotorForce = force;
|
||||
}
|
||||
|
||||
float32 b2LineJoint::GetMotorForce() const
|
||||
{
|
||||
return m_motorImpulse;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
170
AndEngine/jni/Box2D/Dynamics/Joints/b2LineJoint.h
Normal file
170
AndEngine/jni/Box2D/Dynamics/Joints/b2LineJoint.h
Normal file
@@ -0,0 +1,170 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef B2_LINE_JOINT_H
|
||||
#define B2_LINE_JOINT_H
|
||||
|
||||
#include "Box2D/Dynamics/Joints/b2Joint.h"
|
||||
|
||||
/// Line joint definition. This requires defining a line of
|
||||
/// motion using an axis and an anchor point. The definition uses local
|
||||
/// anchor points and a local axis so that the initial configuration
|
||||
/// can violate the constraint slightly. The joint translation is zero
|
||||
/// when the local anchor points coincide in world space. Using local
|
||||
/// anchors and a local axis helps when saving and loading a game.
|
||||
struct b2LineJointDef : public b2JointDef
|
||||
{
|
||||
b2LineJointDef()
|
||||
{
|
||||
type = e_lineJoint;
|
||||
localAnchorA.SetZero();
|
||||
localAnchorB.SetZero();
|
||||
localAxisA.Set(1.0f, 0.0f);
|
||||
enableLimit = false;
|
||||
lowerTranslation = 0.0f;
|
||||
upperTranslation = 0.0f;
|
||||
enableMotor = false;
|
||||
maxMotorForce = 0.0f;
|
||||
motorSpeed = 0.0f;
|
||||
}
|
||||
|
||||
/// Initialize the bodies, anchors, axis, and reference angle using the world
|
||||
/// anchor and world axis.
|
||||
void Initialize(b2Body* bodyA, b2Body* bodyB, const b2Vec2& anchor, const b2Vec2& axis);
|
||||
|
||||
/// The local anchor point relative to body1's origin.
|
||||
b2Vec2 localAnchorA;
|
||||
|
||||
/// The local anchor point relative to body2's origin.
|
||||
b2Vec2 localAnchorB;
|
||||
|
||||
/// The local translation axis in body1.
|
||||
b2Vec2 localAxisA;
|
||||
|
||||
/// Enable/disable the joint limit.
|
||||
bool enableLimit;
|
||||
|
||||
/// The lower translation limit, usually in meters.
|
||||
float32 lowerTranslation;
|
||||
|
||||
/// The upper translation limit, usually in meters.
|
||||
float32 upperTranslation;
|
||||
|
||||
/// Enable/disable the joint motor.
|
||||
bool enableMotor;
|
||||
|
||||
/// The maximum motor torque, usually in N-m.
|
||||
float32 maxMotorForce;
|
||||
|
||||
/// The desired motor speed in radians per second.
|
||||
float32 motorSpeed;
|
||||
};
|
||||
|
||||
/// A line joint. This joint provides two degrees of freedom: translation
|
||||
/// along an axis fixed in body1 and rotation in the plane. You can use a
|
||||
/// joint limit to restrict the range of motion and a joint motor to drive
|
||||
/// the motion or to model joint friction.
|
||||
class b2LineJoint : public b2Joint
|
||||
{
|
||||
public:
|
||||
b2Vec2 GetAnchorA() const;
|
||||
b2Vec2 GetAnchorB() const;
|
||||
|
||||
b2Vec2 GetReactionForce(float32 inv_dt) const;
|
||||
float32 GetReactionTorque(float32 inv_dt) const;
|
||||
|
||||
/// Get the current joint translation, usually in meters.
|
||||
float32 GetJointTranslation() const;
|
||||
|
||||
/// Get the current joint translation speed, usually in meters per second.
|
||||
float32 GetJointSpeed() const;
|
||||
|
||||
/// Is the joint limit enabled?
|
||||
bool IsLimitEnabled() const;
|
||||
|
||||
/// Enable/disable the joint limit.
|
||||
void EnableLimit(bool flag);
|
||||
|
||||
/// Get the lower joint limit, usually in meters.
|
||||
float32 GetLowerLimit() const;
|
||||
|
||||
/// Get the upper joint limit, usually in meters.
|
||||
float32 GetUpperLimit() const;
|
||||
|
||||
/// Set the joint limits, usually in meters.
|
||||
void SetLimits(float32 lower, float32 upper);
|
||||
|
||||
/// Is the joint motor enabled?
|
||||
bool IsMotorEnabled() const;
|
||||
|
||||
/// Enable/disable the joint motor.
|
||||
void EnableMotor(bool flag);
|
||||
|
||||
/// Set the motor speed, usually in meters per second.
|
||||
void SetMotorSpeed(float32 speed);
|
||||
|
||||
/// Get the motor speed, usually in meters per second.
|
||||
float32 GetMotorSpeed() const;
|
||||
|
||||
/// Set/Get the maximum motor force, usually in N.
|
||||
void SetMaxMotorForce(float32 force);
|
||||
float32 GetMaxMotorForce() const;
|
||||
|
||||
/// Get the current motor force, usually in N.
|
||||
float32 GetMotorForce() const;
|
||||
|
||||
protected:
|
||||
|
||||
friend class b2Joint;
|
||||
b2LineJoint(const b2LineJointDef* def);
|
||||
|
||||
void InitVelocityConstraints(const b2TimeStep& step);
|
||||
void SolveVelocityConstraints(const b2TimeStep& step);
|
||||
bool SolvePositionConstraints(float32 baumgarte);
|
||||
|
||||
b2Vec2 m_localAnchor1;
|
||||
b2Vec2 m_localAnchor2;
|
||||
b2Vec2 m_localXAxis1;
|
||||
b2Vec2 m_localYAxis1;
|
||||
|
||||
b2Vec2 m_axis, m_perp;
|
||||
float32 m_s1, m_s2;
|
||||
float32 m_a1, m_a2;
|
||||
|
||||
b2Mat22 m_K;
|
||||
b2Vec2 m_impulse;
|
||||
|
||||
float32 m_motorMass; // effective mass for motor/limit translational constraint.
|
||||
float32 m_motorImpulse;
|
||||
|
||||
float32 m_lowerTranslation;
|
||||
float32 m_upperTranslation;
|
||||
float32 m_maxMotorForce;
|
||||
float32 m_motorSpeed;
|
||||
|
||||
bool m_enableLimit;
|
||||
bool m_enableMotor;
|
||||
b2LimitState m_limitState;
|
||||
};
|
||||
|
||||
inline float32 b2LineJoint::GetMotorSpeed() const
|
||||
{
|
||||
return m_motorSpeed;
|
||||
}
|
||||
|
||||
#endif
|
||||
198
AndEngine/jni/Box2D/Dynamics/Joints/b2MouseJoint.cpp
Normal file
198
AndEngine/jni/Box2D/Dynamics/Joints/b2MouseJoint.cpp
Normal file
@@ -0,0 +1,198 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#include "Box2D/Dynamics/Joints/b2MouseJoint.h"
|
||||
#include "Box2D/Dynamics/b2Body.h"
|
||||
#include "Box2D/Dynamics/b2TimeStep.h"
|
||||
#include <stdio.h>
|
||||
|
||||
// p = attached point, m = mouse point
|
||||
// C = p - m
|
||||
// Cdot = v
|
||||
// = v + cross(w, r)
|
||||
// J = [I r_skew]
|
||||
// Identity used:
|
||||
// w k % (rx i + ry j) = w * (-ry i + rx j)
|
||||
|
||||
b2MouseJoint::b2MouseJoint(const b2MouseJointDef* def)
|
||||
: b2Joint(def)
|
||||
{
|
||||
b2Assert(def->target.IsValid());
|
||||
b2Assert(b2IsValid(def->maxForce) && def->maxForce >= 0.0f);
|
||||
b2Assert(b2IsValid(def->frequencyHz) && def->frequencyHz >= 0.0f);
|
||||
b2Assert(b2IsValid(def->dampingRatio) && def->dampingRatio >= 0.0f);
|
||||
|
||||
m_target = def->target;
|
||||
m_localAnchor = b2MulT(m_bodyB->GetTransform(), m_target);
|
||||
|
||||
m_maxForce = def->maxForce;
|
||||
m_impulse.SetZero();
|
||||
|
||||
m_frequencyHz = def->frequencyHz;
|
||||
m_dampingRatio = def->dampingRatio;
|
||||
|
||||
m_beta = 0.0f;
|
||||
m_gamma = 0.0f;
|
||||
}
|
||||
|
||||
void b2MouseJoint::SetTarget(const b2Vec2& target)
|
||||
{
|
||||
if (m_bodyB->IsAwake() == false)
|
||||
{
|
||||
m_bodyB->SetAwake(true);
|
||||
}
|
||||
m_target = target;
|
||||
}
|
||||
|
||||
const b2Vec2& b2MouseJoint::GetTarget() const
|
||||
{
|
||||
return m_target;
|
||||
}
|
||||
|
||||
void b2MouseJoint::SetMaxForce(float32 force)
|
||||
{
|
||||
m_maxForce = force;
|
||||
}
|
||||
|
||||
float32 b2MouseJoint::GetMaxForce() const
|
||||
{
|
||||
return m_maxForce;
|
||||
}
|
||||
|
||||
void b2MouseJoint::SetFrequency(float32 hz)
|
||||
{
|
||||
m_frequencyHz = hz;
|
||||
}
|
||||
|
||||
float32 b2MouseJoint::GetFrequency() const
|
||||
{
|
||||
return m_frequencyHz;
|
||||
}
|
||||
|
||||
void b2MouseJoint::SetDampingRatio(float32 ratio)
|
||||
{
|
||||
m_dampingRatio = ratio;
|
||||
}
|
||||
|
||||
float32 b2MouseJoint::GetDampingRatio() const
|
||||
{
|
||||
return m_dampingRatio;
|
||||
}
|
||||
|
||||
void b2MouseJoint::InitVelocityConstraints(const b2TimeStep& step)
|
||||
{
|
||||
b2Body* b = m_bodyB;
|
||||
|
||||
float32 mass = b->GetMass();
|
||||
|
||||
// Frequency
|
||||
float32 omega = 2.0f * b2_pi * m_frequencyHz;
|
||||
|
||||
// Damping coefficient
|
||||
float32 d = 2.0f * mass * m_dampingRatio * omega;
|
||||
|
||||
// Spring stiffness
|
||||
float32 k = mass * (omega * omega);
|
||||
|
||||
// magic formulas
|
||||
// gamma has units of inverse mass.
|
||||
// beta has units of inverse time.
|
||||
b2Assert(d + step.dt * k > b2_epsilon);
|
||||
m_gamma = step.dt * (d + step.dt * k);
|
||||
if (m_gamma != 0.0f)
|
||||
{
|
||||
m_gamma = 1.0f / m_gamma;
|
||||
}
|
||||
m_beta = step.dt * k * m_gamma;
|
||||
|
||||
// Compute the effective mass matrix.
|
||||
b2Vec2 r = b2Mul(b->GetTransform().R, m_localAnchor - b->GetLocalCenter());
|
||||
|
||||
// K = [(1/m1 + 1/m2) * eye(2) - skew(r1) * invI1 * skew(r1) - skew(r2) * invI2 * skew(r2)]
|
||||
// = [1/m1+1/m2 0 ] + invI1 * [r1.y*r1.y -r1.x*r1.y] + invI2 * [r1.y*r1.y -r1.x*r1.y]
|
||||
// [ 0 1/m1+1/m2] [-r1.x*r1.y r1.x*r1.x] [-r1.x*r1.y r1.x*r1.x]
|
||||
float32 invMass = b->m_invMass;
|
||||
float32 invI = b->m_invI;
|
||||
|
||||
b2Mat22 K1;
|
||||
K1.col1.x = invMass; K1.col2.x = 0.0f;
|
||||
K1.col1.y = 0.0f; K1.col2.y = invMass;
|
||||
|
||||
b2Mat22 K2;
|
||||
K2.col1.x = invI * r.y * r.y; K2.col2.x = -invI * r.x * r.y;
|
||||
K2.col1.y = -invI * r.x * r.y; K2.col2.y = invI * r.x * r.x;
|
||||
|
||||
b2Mat22 K = K1 + K2;
|
||||
K.col1.x += m_gamma;
|
||||
K.col2.y += m_gamma;
|
||||
|
||||
m_mass = K.GetInverse();
|
||||
|
||||
m_C = b->m_sweep.c + r - m_target;
|
||||
|
||||
// Cheat with some damping
|
||||
b->m_angularVelocity *= 0.98f;
|
||||
|
||||
// Warm starting.
|
||||
m_impulse *= step.dtRatio;
|
||||
b->m_linearVelocity += invMass * m_impulse;
|
||||
b->m_angularVelocity += invI * b2Cross(r, m_impulse);
|
||||
}
|
||||
|
||||
void b2MouseJoint::SolveVelocityConstraints(const b2TimeStep& step)
|
||||
{
|
||||
b2Body* b = m_bodyB;
|
||||
|
||||
b2Vec2 r = b2Mul(b->GetTransform().R, m_localAnchor - b->GetLocalCenter());
|
||||
|
||||
// Cdot = v + cross(w, r)
|
||||
b2Vec2 Cdot = b->m_linearVelocity + b2Cross(b->m_angularVelocity, r);
|
||||
b2Vec2 impulse = b2Mul(m_mass, -(Cdot + m_beta * m_C + m_gamma * m_impulse));
|
||||
|
||||
b2Vec2 oldImpulse = m_impulse;
|
||||
m_impulse += impulse;
|
||||
float32 maxImpulse = step.dt * m_maxForce;
|
||||
if (m_impulse.LengthSquared() > maxImpulse * maxImpulse)
|
||||
{
|
||||
m_impulse *= maxImpulse / m_impulse.Length();
|
||||
}
|
||||
impulse = m_impulse - oldImpulse;
|
||||
|
||||
b->m_linearVelocity += b->m_invMass * impulse;
|
||||
b->m_angularVelocity += b->m_invI * b2Cross(r, impulse);
|
||||
}
|
||||
|
||||
b2Vec2 b2MouseJoint::GetAnchorA() const
|
||||
{
|
||||
return m_target;
|
||||
}
|
||||
|
||||
b2Vec2 b2MouseJoint::GetAnchorB() const
|
||||
{
|
||||
return m_bodyB->GetWorldPoint(m_localAnchor);
|
||||
}
|
||||
|
||||
b2Vec2 b2MouseJoint::GetReactionForce(float32 inv_dt) const
|
||||
{
|
||||
return inv_dt * m_impulse;
|
||||
}
|
||||
|
||||
float32 b2MouseJoint::GetReactionTorque(float32 inv_dt) const
|
||||
{
|
||||
return inv_dt * 0.0f;
|
||||
}
|
||||
114
AndEngine/jni/Box2D/Dynamics/Joints/b2MouseJoint.h
Normal file
114
AndEngine/jni/Box2D/Dynamics/Joints/b2MouseJoint.h
Normal file
@@ -0,0 +1,114 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef B2_MOUSE_JOINT_H
|
||||
#define B2_MOUSE_JOINT_H
|
||||
|
||||
#include "Box2D/Dynamics/Joints/b2Joint.h"
|
||||
|
||||
/// Mouse joint definition. This requires a world target point,
|
||||
/// tuning parameters, and the time step.
|
||||
struct b2MouseJointDef : public b2JointDef
|
||||
{
|
||||
b2MouseJointDef()
|
||||
{
|
||||
type = e_mouseJoint;
|
||||
target.Set(0.0f, 0.0f);
|
||||
maxForce = 0.0f;
|
||||
frequencyHz = 5.0f;
|
||||
dampingRatio = 0.7f;
|
||||
}
|
||||
|
||||
/// The initial world target point. This is assumed
|
||||
/// to coincide with the body anchor initially.
|
||||
b2Vec2 target;
|
||||
|
||||
/// The maximum constraint force that can be exerted
|
||||
/// to move the candidate body. Usually you will express
|
||||
/// as some multiple of the weight (multiplier * mass * gravity).
|
||||
float32 maxForce;
|
||||
|
||||
/// The response speed.
|
||||
float32 frequencyHz;
|
||||
|
||||
/// The damping ratio. 0 = no damping, 1 = critical damping.
|
||||
float32 dampingRatio;
|
||||
};
|
||||
|
||||
/// A mouse joint is used to make a point on a body track a
|
||||
/// specified world point. This a soft constraint with a maximum
|
||||
/// force. This allows the constraint to stretch and without
|
||||
/// applying huge forces.
|
||||
/// NOTE: this joint is not documented in the manual because it was
|
||||
/// developed to be used in the testbed. If you want to learn how to
|
||||
/// use the mouse joint, look at the testbed.
|
||||
class b2MouseJoint : public b2Joint
|
||||
{
|
||||
public:
|
||||
|
||||
/// Implements b2Joint.
|
||||
b2Vec2 GetAnchorA() const;
|
||||
|
||||
/// Implements b2Joint.
|
||||
b2Vec2 GetAnchorB() const;
|
||||
|
||||
/// Implements b2Joint.
|
||||
b2Vec2 GetReactionForce(float32 inv_dt) const;
|
||||
|
||||
/// Implements b2Joint.
|
||||
float32 GetReactionTorque(float32 inv_dt) const;
|
||||
|
||||
/// Use this to update the target point.
|
||||
void SetTarget(const b2Vec2& target);
|
||||
const b2Vec2& GetTarget() const;
|
||||
|
||||
/// Set/get the maximum force in Newtons.
|
||||
void SetMaxForce(float32 force);
|
||||
float32 GetMaxForce() const;
|
||||
|
||||
/// Set/get the frequency in Hertz.
|
||||
void SetFrequency(float32 hz);
|
||||
float32 GetFrequency() const;
|
||||
|
||||
/// Set/get the damping ratio (dimensionless).
|
||||
void SetDampingRatio(float32 ratio);
|
||||
float32 GetDampingRatio() const;
|
||||
|
||||
protected:
|
||||
friend class b2Joint;
|
||||
|
||||
b2MouseJoint(const b2MouseJointDef* def);
|
||||
|
||||
void InitVelocityConstraints(const b2TimeStep& step);
|
||||
void SolveVelocityConstraints(const b2TimeStep& step);
|
||||
bool SolvePositionConstraints(float32 baumgarte) { B2_NOT_USED(baumgarte); return true; }
|
||||
|
||||
b2Vec2 m_localAnchor;
|
||||
b2Vec2 m_target;
|
||||
b2Vec2 m_impulse;
|
||||
|
||||
b2Mat22 m_mass; // effective mass for point-to-point constraint.
|
||||
b2Vec2 m_C; // position error
|
||||
float32 m_maxForce;
|
||||
float32 m_frequencyHz;
|
||||
float32 m_dampingRatio;
|
||||
float32 m_beta;
|
||||
float32 m_gamma;
|
||||
};
|
||||
|
||||
#endif
|
||||
586
AndEngine/jni/Box2D/Dynamics/Joints/b2PrismaticJoint.cpp
Normal file
586
AndEngine/jni/Box2D/Dynamics/Joints/b2PrismaticJoint.cpp
Normal file
@@ -0,0 +1,586 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#include "Box2D/Dynamics/Joints/b2PrismaticJoint.h"
|
||||
#include "Box2D/Dynamics/b2Body.h"
|
||||
#include "Box2D/Dynamics/b2TimeStep.h"
|
||||
|
||||
// Linear constraint (point-to-line)
|
||||
// d = p2 - p1 = x2 + r2 - x1 - r1
|
||||
// C = dot(perp, d)
|
||||
// Cdot = dot(d, cross(w1, perp)) + dot(perp, v2 + cross(w2, r2) - v1 - cross(w1, r1))
|
||||
// = -dot(perp, v1) - dot(cross(d + r1, perp), w1) + dot(perp, v2) + dot(cross(r2, perp), v2)
|
||||
// J = [-perp, -cross(d + r1, perp), perp, cross(r2,perp)]
|
||||
//
|
||||
// Angular constraint
|
||||
// C = a2 - a1 + a_initial
|
||||
// Cdot = w2 - w1
|
||||
// J = [0 0 -1 0 0 1]
|
||||
//
|
||||
// K = J * invM * JT
|
||||
//
|
||||
// J = [-a -s1 a s2]
|
||||
// [0 -1 0 1]
|
||||
// a = perp
|
||||
// s1 = cross(d + r1, a) = cross(p2 - x1, a)
|
||||
// s2 = cross(r2, a) = cross(p2 - x2, a)
|
||||
|
||||
|
||||
// Motor/Limit linear constraint
|
||||
// C = dot(ax1, d)
|
||||
// Cdot = = -dot(ax1, v1) - dot(cross(d + r1, ax1), w1) + dot(ax1, v2) + dot(cross(r2, ax1), v2)
|
||||
// J = [-ax1 -cross(d+r1,ax1) ax1 cross(r2,ax1)]
|
||||
|
||||
// Block Solver
|
||||
// We develop a block solver that includes the joint limit. This makes the limit stiff (inelastic) even
|
||||
// when the mass has poor distribution (leading to large torques about the joint anchor points).
|
||||
//
|
||||
// The Jacobian has 3 rows:
|
||||
// J = [-uT -s1 uT s2] // linear
|
||||
// [0 -1 0 1] // angular
|
||||
// [-vT -a1 vT a2] // limit
|
||||
//
|
||||
// u = perp
|
||||
// v = axis
|
||||
// s1 = cross(d + r1, u), s2 = cross(r2, u)
|
||||
// a1 = cross(d + r1, v), a2 = cross(r2, v)
|
||||
|
||||
// M * (v2 - v1) = JT * df
|
||||
// J * v2 = bias
|
||||
//
|
||||
// v2 = v1 + invM * JT * df
|
||||
// J * (v1 + invM * JT * df) = bias
|
||||
// K * df = bias - J * v1 = -Cdot
|
||||
// K = J * invM * JT
|
||||
// Cdot = J * v1 - bias
|
||||
//
|
||||
// Now solve for f2.
|
||||
// df = f2 - f1
|
||||
// K * (f2 - f1) = -Cdot
|
||||
// f2 = invK * (-Cdot) + f1
|
||||
//
|
||||
// Clamp accumulated limit impulse.
|
||||
// lower: f2(3) = max(f2(3), 0)
|
||||
// upper: f2(3) = min(f2(3), 0)
|
||||
//
|
||||
// Solve for correct f2(1:2)
|
||||
// K(1:2, 1:2) * f2(1:2) = -Cdot(1:2) - K(1:2,3) * f2(3) + K(1:2,1:3) * f1
|
||||
// = -Cdot(1:2) - K(1:2,3) * f2(3) + K(1:2,1:2) * f1(1:2) + K(1:2,3) * f1(3)
|
||||
// K(1:2, 1:2) * f2(1:2) = -Cdot(1:2) - K(1:2,3) * (f2(3) - f1(3)) + K(1:2,1:2) * f1(1:2)
|
||||
// f2(1:2) = invK(1:2,1:2) * (-Cdot(1:2) - K(1:2,3) * (f2(3) - f1(3))) + f1(1:2)
|
||||
//
|
||||
// Now compute impulse to be applied:
|
||||
// df = f2 - f1
|
||||
|
||||
void b2PrismaticJointDef::Initialize(b2Body* b1, b2Body* b2, const b2Vec2& anchor, const b2Vec2& axis)
|
||||
{
|
||||
bodyA = b1;
|
||||
bodyB = b2;
|
||||
localAnchorA = bodyA->GetLocalPoint(anchor);
|
||||
localAnchorB = bodyB->GetLocalPoint(anchor);
|
||||
localAxis1 = bodyA->GetLocalVector(axis);
|
||||
referenceAngle = bodyB->GetAngle() - bodyA->GetAngle();
|
||||
}
|
||||
|
||||
b2PrismaticJoint::b2PrismaticJoint(const b2PrismaticJointDef* def)
|
||||
: b2Joint(def)
|
||||
{
|
||||
m_localAnchor1 = def->localAnchorA;
|
||||
m_localAnchor2 = def->localAnchorB;
|
||||
m_localXAxis1 = def->localAxis1;
|
||||
m_localYAxis1 = b2Cross(1.0f, m_localXAxis1);
|
||||
m_refAngle = def->referenceAngle;
|
||||
|
||||
m_impulse.SetZero();
|
||||
m_motorMass = 0.0;
|
||||
m_motorImpulse = 0.0f;
|
||||
|
||||
m_lowerTranslation = def->lowerTranslation;
|
||||
m_upperTranslation = def->upperTranslation;
|
||||
m_maxMotorForce = def->maxMotorForce;
|
||||
m_motorSpeed = def->motorSpeed;
|
||||
m_enableLimit = def->enableLimit;
|
||||
m_enableMotor = def->enableMotor;
|
||||
m_limitState = e_inactiveLimit;
|
||||
|
||||
m_axis.SetZero();
|
||||
m_perp.SetZero();
|
||||
}
|
||||
|
||||
void b2PrismaticJoint::InitVelocityConstraints(const b2TimeStep& step)
|
||||
{
|
||||
b2Body* b1 = m_bodyA;
|
||||
b2Body* b2 = m_bodyB;
|
||||
|
||||
m_localCenterA = b1->GetLocalCenter();
|
||||
m_localCenterB = b2->GetLocalCenter();
|
||||
|
||||
b2Transform xf1 = b1->GetTransform();
|
||||
b2Transform xf2 = b2->GetTransform();
|
||||
|
||||
// Compute the effective masses.
|
||||
b2Vec2 r1 = b2Mul(xf1.R, m_localAnchor1 - m_localCenterA);
|
||||
b2Vec2 r2 = b2Mul(xf2.R, m_localAnchor2 - m_localCenterB);
|
||||
b2Vec2 d = b2->m_sweep.c + r2 - b1->m_sweep.c - r1;
|
||||
|
||||
m_invMassA = b1->m_invMass;
|
||||
m_invIA = b1->m_invI;
|
||||
m_invMassB = b2->m_invMass;
|
||||
m_invIB = b2->m_invI;
|
||||
|
||||
// Compute motor Jacobian and effective mass.
|
||||
{
|
||||
m_axis = b2Mul(xf1.R, m_localXAxis1);
|
||||
m_a1 = b2Cross(d + r1, m_axis);
|
||||
m_a2 = b2Cross(r2, m_axis);
|
||||
|
||||
m_motorMass = m_invMassA + m_invMassB + m_invIA * m_a1 * m_a1 + m_invIB * m_a2 * m_a2;
|
||||
if (m_motorMass > b2_epsilon)
|
||||
{
|
||||
m_motorMass = 1.0f / m_motorMass;
|
||||
}
|
||||
}
|
||||
|
||||
// Prismatic constraint.
|
||||
{
|
||||
m_perp = b2Mul(xf1.R, m_localYAxis1);
|
||||
|
||||
m_s1 = b2Cross(d + r1, m_perp);
|
||||
m_s2 = b2Cross(r2, m_perp);
|
||||
|
||||
float32 m1 = m_invMassA, m2 = m_invMassB;
|
||||
float32 i1 = m_invIA, i2 = m_invIB;
|
||||
|
||||
float32 k11 = m1 + m2 + i1 * m_s1 * m_s1 + i2 * m_s2 * m_s2;
|
||||
float32 k12 = i1 * m_s1 + i2 * m_s2;
|
||||
float32 k13 = i1 * m_s1 * m_a1 + i2 * m_s2 * m_a2;
|
||||
float32 k22 = i1 + i2;
|
||||
float32 k23 = i1 * m_a1 + i2 * m_a2;
|
||||
float32 k33 = m1 + m2 + i1 * m_a1 * m_a1 + i2 * m_a2 * m_a2;
|
||||
|
||||
m_K.col1.Set(k11, k12, k13);
|
||||
m_K.col2.Set(k12, k22, k23);
|
||||
m_K.col3.Set(k13, k23, k33);
|
||||
}
|
||||
|
||||
// Compute motor and limit terms.
|
||||
if (m_enableLimit)
|
||||
{
|
||||
float32 jointTranslation = b2Dot(m_axis, d);
|
||||
if (b2Abs(m_upperTranslation - m_lowerTranslation) < 2.0f * b2_linearSlop)
|
||||
{
|
||||
m_limitState = e_equalLimits;
|
||||
}
|
||||
else if (jointTranslation <= m_lowerTranslation)
|
||||
{
|
||||
if (m_limitState != e_atLowerLimit)
|
||||
{
|
||||
m_limitState = e_atLowerLimit;
|
||||
m_impulse.z = 0.0f;
|
||||
}
|
||||
}
|
||||
else if (jointTranslation >= m_upperTranslation)
|
||||
{
|
||||
if (m_limitState != e_atUpperLimit)
|
||||
{
|
||||
m_limitState = e_atUpperLimit;
|
||||
m_impulse.z = 0.0f;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
m_limitState = e_inactiveLimit;
|
||||
m_impulse.z = 0.0f;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
m_limitState = e_inactiveLimit;
|
||||
m_impulse.z = 0.0f;
|
||||
}
|
||||
|
||||
if (m_enableMotor == false)
|
||||
{
|
||||
m_motorImpulse = 0.0f;
|
||||
}
|
||||
|
||||
if (step.warmStarting)
|
||||
{
|
||||
// Account for variable time step.
|
||||
m_impulse *= step.dtRatio;
|
||||
m_motorImpulse *= step.dtRatio;
|
||||
|
||||
b2Vec2 P = m_impulse.x * m_perp + (m_motorImpulse + m_impulse.z) * m_axis;
|
||||
float32 L1 = m_impulse.x * m_s1 + m_impulse.y + (m_motorImpulse + m_impulse.z) * m_a1;
|
||||
float32 L2 = m_impulse.x * m_s2 + m_impulse.y + (m_motorImpulse + m_impulse.z) * m_a2;
|
||||
|
||||
b1->m_linearVelocity -= m_invMassA * P;
|
||||
b1->m_angularVelocity -= m_invIA * L1;
|
||||
|
||||
b2->m_linearVelocity += m_invMassB * P;
|
||||
b2->m_angularVelocity += m_invIB * L2;
|
||||
}
|
||||
else
|
||||
{
|
||||
m_impulse.SetZero();
|
||||
m_motorImpulse = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
void b2PrismaticJoint::SolveVelocityConstraints(const b2TimeStep& step)
|
||||
{
|
||||
b2Body* b1 = m_bodyA;
|
||||
b2Body* b2 = m_bodyB;
|
||||
|
||||
b2Vec2 v1 = b1->m_linearVelocity;
|
||||
float32 w1 = b1->m_angularVelocity;
|
||||
b2Vec2 v2 = b2->m_linearVelocity;
|
||||
float32 w2 = b2->m_angularVelocity;
|
||||
|
||||
// Solve linear motor constraint.
|
||||
if (m_enableMotor && m_limitState != e_equalLimits)
|
||||
{
|
||||
float32 Cdot = b2Dot(m_axis, v2 - v1) + m_a2 * w2 - m_a1 * w1;
|
||||
float32 impulse = m_motorMass * (m_motorSpeed - Cdot);
|
||||
float32 oldImpulse = m_motorImpulse;
|
||||
float32 maxImpulse = step.dt * m_maxMotorForce;
|
||||
m_motorImpulse = b2Clamp(m_motorImpulse + impulse, -maxImpulse, maxImpulse);
|
||||
impulse = m_motorImpulse - oldImpulse;
|
||||
|
||||
b2Vec2 P = impulse * m_axis;
|
||||
float32 L1 = impulse * m_a1;
|
||||
float32 L2 = impulse * m_a2;
|
||||
|
||||
v1 -= m_invMassA * P;
|
||||
w1 -= m_invIA * L1;
|
||||
|
||||
v2 += m_invMassB * P;
|
||||
w2 += m_invIB * L2;
|
||||
}
|
||||
|
||||
b2Vec2 Cdot1;
|
||||
Cdot1.x = b2Dot(m_perp, v2 - v1) + m_s2 * w2 - m_s1 * w1;
|
||||
Cdot1.y = w2 - w1;
|
||||
|
||||
if (m_enableLimit && m_limitState != e_inactiveLimit)
|
||||
{
|
||||
// Solve prismatic and limit constraint in block form.
|
||||
float32 Cdot2;
|
||||
Cdot2 = b2Dot(m_axis, v2 - v1) + m_a2 * w2 - m_a1 * w1;
|
||||
b2Vec3 Cdot(Cdot1.x, Cdot1.y, Cdot2);
|
||||
|
||||
b2Vec3 f1 = m_impulse;
|
||||
b2Vec3 df = m_K.Solve33(-Cdot);
|
||||
m_impulse += df;
|
||||
|
||||
if (m_limitState == e_atLowerLimit)
|
||||
{
|
||||
m_impulse.z = b2Max(m_impulse.z, 0.0f);
|
||||
}
|
||||
else if (m_limitState == e_atUpperLimit)
|
||||
{
|
||||
m_impulse.z = b2Min(m_impulse.z, 0.0f);
|
||||
}
|
||||
|
||||
// f2(1:2) = invK(1:2,1:2) * (-Cdot(1:2) - K(1:2,3) * (f2(3) - f1(3))) + f1(1:2)
|
||||
b2Vec2 b = -Cdot1 - (m_impulse.z - f1.z) * b2Vec2(m_K.col3.x, m_K.col3.y);
|
||||
b2Vec2 f2r = m_K.Solve22(b) + b2Vec2(f1.x, f1.y);
|
||||
m_impulse.x = f2r.x;
|
||||
m_impulse.y = f2r.y;
|
||||
|
||||
df = m_impulse - f1;
|
||||
|
||||
b2Vec2 P = df.x * m_perp + df.z * m_axis;
|
||||
float32 L1 = df.x * m_s1 + df.y + df.z * m_a1;
|
||||
float32 L2 = df.x * m_s2 + df.y + df.z * m_a2;
|
||||
|
||||
v1 -= m_invMassA * P;
|
||||
w1 -= m_invIA * L1;
|
||||
|
||||
v2 += m_invMassB * P;
|
||||
w2 += m_invIB * L2;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Limit is inactive, just solve the prismatic constraint in block form.
|
||||
b2Vec2 df = m_K.Solve22(-Cdot1);
|
||||
m_impulse.x += df.x;
|
||||
m_impulse.y += df.y;
|
||||
|
||||
b2Vec2 P = df.x * m_perp;
|
||||
float32 L1 = df.x * m_s1 + df.y;
|
||||
float32 L2 = df.x * m_s2 + df.y;
|
||||
|
||||
v1 -= m_invMassA * P;
|
||||
w1 -= m_invIA * L1;
|
||||
|
||||
v2 += m_invMassB * P;
|
||||
w2 += m_invIB * L2;
|
||||
}
|
||||
|
||||
b1->m_linearVelocity = v1;
|
||||
b1->m_angularVelocity = w1;
|
||||
b2->m_linearVelocity = v2;
|
||||
b2->m_angularVelocity = w2;
|
||||
}
|
||||
|
||||
bool b2PrismaticJoint::SolvePositionConstraints(float32 baumgarte)
|
||||
{
|
||||
B2_NOT_USED(baumgarte);
|
||||
|
||||
b2Body* b1 = m_bodyA;
|
||||
b2Body* b2 = m_bodyB;
|
||||
|
||||
b2Vec2 c1 = b1->m_sweep.c;
|
||||
float32 a1 = b1->m_sweep.a;
|
||||
|
||||
b2Vec2 c2 = b2->m_sweep.c;
|
||||
float32 a2 = b2->m_sweep.a;
|
||||
|
||||
// Solve linear limit constraint.
|
||||
float32 linearError = 0.0f, angularError = 0.0f;
|
||||
bool active = false;
|
||||
float32 C2 = 0.0f;
|
||||
|
||||
b2Mat22 R1(a1), R2(a2);
|
||||
|
||||
b2Vec2 r1 = b2Mul(R1, m_localAnchor1 - m_localCenterA);
|
||||
b2Vec2 r2 = b2Mul(R2, m_localAnchor2 - m_localCenterB);
|
||||
b2Vec2 d = c2 + r2 - c1 - r1;
|
||||
|
||||
if (m_enableLimit)
|
||||
{
|
||||
m_axis = b2Mul(R1, m_localXAxis1);
|
||||
|
||||
m_a1 = b2Cross(d + r1, m_axis);
|
||||
m_a2 = b2Cross(r2, m_axis);
|
||||
|
||||
float32 translation = b2Dot(m_axis, d);
|
||||
if (b2Abs(m_upperTranslation - m_lowerTranslation) < 2.0f * b2_linearSlop)
|
||||
{
|
||||
// Prevent large angular corrections
|
||||
C2 = b2Clamp(translation, -b2_maxLinearCorrection, b2_maxLinearCorrection);
|
||||
linearError = b2Abs(translation);
|
||||
active = true;
|
||||
}
|
||||
else if (translation <= m_lowerTranslation)
|
||||
{
|
||||
// Prevent large linear corrections and allow some slop.
|
||||
C2 = b2Clamp(translation - m_lowerTranslation + b2_linearSlop, -b2_maxLinearCorrection, 0.0f);
|
||||
linearError = m_lowerTranslation - translation;
|
||||
active = true;
|
||||
}
|
||||
else if (translation >= m_upperTranslation)
|
||||
{
|
||||
// Prevent large linear corrections and allow some slop.
|
||||
C2 = b2Clamp(translation - m_upperTranslation - b2_linearSlop, 0.0f, b2_maxLinearCorrection);
|
||||
linearError = translation - m_upperTranslation;
|
||||
active = true;
|
||||
}
|
||||
}
|
||||
|
||||
m_perp = b2Mul(R1, m_localYAxis1);
|
||||
|
||||
m_s1 = b2Cross(d + r1, m_perp);
|
||||
m_s2 = b2Cross(r2, m_perp);
|
||||
|
||||
b2Vec3 impulse;
|
||||
b2Vec2 C1;
|
||||
C1.x = b2Dot(m_perp, d);
|
||||
C1.y = a2 - a1 - m_refAngle;
|
||||
|
||||
linearError = b2Max(linearError, b2Abs(C1.x));
|
||||
angularError = b2Abs(C1.y);
|
||||
|
||||
if (active)
|
||||
{
|
||||
float32 m1 = m_invMassA, m2 = m_invMassB;
|
||||
float32 i1 = m_invIA, i2 = m_invIB;
|
||||
|
||||
float32 k11 = m1 + m2 + i1 * m_s1 * m_s1 + i2 * m_s2 * m_s2;
|
||||
float32 k12 = i1 * m_s1 + i2 * m_s2;
|
||||
float32 k13 = i1 * m_s1 * m_a1 + i2 * m_s2 * m_a2;
|
||||
float32 k22 = i1 + i2;
|
||||
float32 k23 = i1 * m_a1 + i2 * m_a2;
|
||||
float32 k33 = m1 + m2 + i1 * m_a1 * m_a1 + i2 * m_a2 * m_a2;
|
||||
|
||||
m_K.col1.Set(k11, k12, k13);
|
||||
m_K.col2.Set(k12, k22, k23);
|
||||
m_K.col3.Set(k13, k23, k33);
|
||||
|
||||
b2Vec3 C;
|
||||
C.x = C1.x;
|
||||
C.y = C1.y;
|
||||
C.z = C2;
|
||||
|
||||
impulse = m_K.Solve33(-C);
|
||||
}
|
||||
else
|
||||
{
|
||||
float32 m1 = m_invMassA, m2 = m_invMassB;
|
||||
float32 i1 = m_invIA, i2 = m_invIB;
|
||||
|
||||
float32 k11 = m1 + m2 + i1 * m_s1 * m_s1 + i2 * m_s2 * m_s2;
|
||||
float32 k12 = i1 * m_s1 + i2 * m_s2;
|
||||
float32 k22 = i1 + i2;
|
||||
|
||||
m_K.col1.Set(k11, k12, 0.0f);
|
||||
m_K.col2.Set(k12, k22, 0.0f);
|
||||
|
||||
b2Vec2 impulse1 = m_K.Solve22(-C1);
|
||||
impulse.x = impulse1.x;
|
||||
impulse.y = impulse1.y;
|
||||
impulse.z = 0.0f;
|
||||
}
|
||||
|
||||
b2Vec2 P = impulse.x * m_perp + impulse.z * m_axis;
|
||||
float32 L1 = impulse.x * m_s1 + impulse.y + impulse.z * m_a1;
|
||||
float32 L2 = impulse.x * m_s2 + impulse.y + impulse.z * m_a2;
|
||||
|
||||
c1 -= m_invMassA * P;
|
||||
a1 -= m_invIA * L1;
|
||||
c2 += m_invMassB * P;
|
||||
a2 += m_invIB * L2;
|
||||
|
||||
// TODO_ERIN remove need for this.
|
||||
b1->m_sweep.c = c1;
|
||||
b1->m_sweep.a = a1;
|
||||
b2->m_sweep.c = c2;
|
||||
b2->m_sweep.a = a2;
|
||||
b1->SynchronizeTransform();
|
||||
b2->SynchronizeTransform();
|
||||
|
||||
return linearError <= b2_linearSlop && angularError <= b2_angularSlop;
|
||||
}
|
||||
|
||||
b2Vec2 b2PrismaticJoint::GetAnchorA() const
|
||||
{
|
||||
return m_bodyA->GetWorldPoint(m_localAnchor1);
|
||||
}
|
||||
|
||||
b2Vec2 b2PrismaticJoint::GetAnchorB() const
|
||||
{
|
||||
return m_bodyB->GetWorldPoint(m_localAnchor2);
|
||||
}
|
||||
|
||||
b2Vec2 b2PrismaticJoint::GetReactionForce(float32 inv_dt) const
|
||||
{
|
||||
return inv_dt * (m_impulse.x * m_perp + (m_motorImpulse + m_impulse.z) * m_axis);
|
||||
}
|
||||
|
||||
float32 b2PrismaticJoint::GetReactionTorque(float32 inv_dt) const
|
||||
{
|
||||
return inv_dt * m_impulse.y;
|
||||
}
|
||||
|
||||
float32 b2PrismaticJoint::GetJointTranslation() const
|
||||
{
|
||||
b2Body* b1 = m_bodyA;
|
||||
b2Body* b2 = m_bodyB;
|
||||
|
||||
b2Vec2 p1 = b1->GetWorldPoint(m_localAnchor1);
|
||||
b2Vec2 p2 = b2->GetWorldPoint(m_localAnchor2);
|
||||
b2Vec2 d = p2 - p1;
|
||||
b2Vec2 axis = b1->GetWorldVector(m_localXAxis1);
|
||||
|
||||
float32 translation = b2Dot(d, axis);
|
||||
return translation;
|
||||
}
|
||||
|
||||
float32 b2PrismaticJoint::GetJointSpeed() const
|
||||
{
|
||||
b2Body* b1 = m_bodyA;
|
||||
b2Body* b2 = m_bodyB;
|
||||
|
||||
b2Vec2 r1 = b2Mul(b1->GetTransform().R, m_localAnchor1 - b1->GetLocalCenter());
|
||||
b2Vec2 r2 = b2Mul(b2->GetTransform().R, m_localAnchor2 - b2->GetLocalCenter());
|
||||
b2Vec2 p1 = b1->m_sweep.c + r1;
|
||||
b2Vec2 p2 = b2->m_sweep.c + r2;
|
||||
b2Vec2 d = p2 - p1;
|
||||
b2Vec2 axis = b1->GetWorldVector(m_localXAxis1);
|
||||
|
||||
b2Vec2 v1 = b1->m_linearVelocity;
|
||||
b2Vec2 v2 = b2->m_linearVelocity;
|
||||
float32 w1 = b1->m_angularVelocity;
|
||||
float32 w2 = b2->m_angularVelocity;
|
||||
|
||||
float32 speed = b2Dot(d, b2Cross(w1, axis)) + b2Dot(axis, v2 + b2Cross(w2, r2) - v1 - b2Cross(w1, r1));
|
||||
return speed;
|
||||
}
|
||||
|
||||
bool b2PrismaticJoint::IsLimitEnabled() const
|
||||
{
|
||||
return m_enableLimit;
|
||||
}
|
||||
|
||||
void b2PrismaticJoint::EnableLimit(bool flag)
|
||||
{
|
||||
m_bodyA->SetAwake(true);
|
||||
m_bodyB->SetAwake(true);
|
||||
m_enableLimit = flag;
|
||||
}
|
||||
|
||||
float32 b2PrismaticJoint::GetLowerLimit() const
|
||||
{
|
||||
return m_lowerTranslation;
|
||||
}
|
||||
|
||||
float32 b2PrismaticJoint::GetUpperLimit() const
|
||||
{
|
||||
return m_upperTranslation;
|
||||
}
|
||||
|
||||
void b2PrismaticJoint::SetLimits(float32 lower, float32 upper)
|
||||
{
|
||||
b2Assert(lower <= upper);
|
||||
m_bodyA->SetAwake(true);
|
||||
m_bodyB->SetAwake(true);
|
||||
m_lowerTranslation = lower;
|
||||
m_upperTranslation = upper;
|
||||
}
|
||||
|
||||
bool b2PrismaticJoint::IsMotorEnabled() const
|
||||
{
|
||||
return m_enableMotor;
|
||||
}
|
||||
|
||||
void b2PrismaticJoint::EnableMotor(bool flag)
|
||||
{
|
||||
m_bodyA->SetAwake(true);
|
||||
m_bodyB->SetAwake(true);
|
||||
m_enableMotor = flag;
|
||||
}
|
||||
|
||||
void b2PrismaticJoint::SetMotorSpeed(float32 speed)
|
||||
{
|
||||
m_bodyA->SetAwake(true);
|
||||
m_bodyB->SetAwake(true);
|
||||
m_motorSpeed = speed;
|
||||
}
|
||||
|
||||
void b2PrismaticJoint::SetMaxMotorForce(float32 force)
|
||||
{
|
||||
m_bodyA->SetAwake(true);
|
||||
m_bodyB->SetAwake(true);
|
||||
m_maxMotorForce = force;
|
||||
}
|
||||
|
||||
float32 b2PrismaticJoint::GetMotorForce() const
|
||||
{
|
||||
return m_motorImpulse;
|
||||
}
|
||||
175
AndEngine/jni/Box2D/Dynamics/Joints/b2PrismaticJoint.h
Normal file
175
AndEngine/jni/Box2D/Dynamics/Joints/b2PrismaticJoint.h
Normal file
@@ -0,0 +1,175 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef B2_PRISMATIC_JOINT_H
|
||||
#define B2_PRISMATIC_JOINT_H
|
||||
|
||||
#include "Box2D/Dynamics/Joints/b2Joint.h"
|
||||
|
||||
/// Prismatic joint definition. This requires defining a line of
|
||||
/// motion using an axis and an anchor point. The definition uses local
|
||||
/// anchor points and a local axis so that the initial configuration
|
||||
/// can violate the constraint slightly. The joint translation is zero
|
||||
/// when the local anchor points coincide in world space. Using local
|
||||
/// anchors and a local axis helps when saving and loading a game.
|
||||
/// @warning at least one body should by dynamic with a non-fixed rotation.
|
||||
struct b2PrismaticJointDef : public b2JointDef
|
||||
{
|
||||
b2PrismaticJointDef()
|
||||
{
|
||||
type = e_prismaticJoint;
|
||||
localAnchorA.SetZero();
|
||||
localAnchorB.SetZero();
|
||||
localAxis1.Set(1.0f, 0.0f);
|
||||
referenceAngle = 0.0f;
|
||||
enableLimit = false;
|
||||
lowerTranslation = 0.0f;
|
||||
upperTranslation = 0.0f;
|
||||
enableMotor = false;
|
||||
maxMotorForce = 0.0f;
|
||||
motorSpeed = 0.0f;
|
||||
}
|
||||
|
||||
/// Initialize the bodies, anchors, axis, and reference angle using the world
|
||||
/// anchor and world axis.
|
||||
void Initialize(b2Body* bodyA, b2Body* bodyB, const b2Vec2& anchor, const b2Vec2& axis);
|
||||
|
||||
/// The local anchor point relative to body1's origin.
|
||||
b2Vec2 localAnchorA;
|
||||
|
||||
/// The local anchor point relative to body2's origin.
|
||||
b2Vec2 localAnchorB;
|
||||
|
||||
/// The local translation axis in body1.
|
||||
b2Vec2 localAxis1;
|
||||
|
||||
/// The constrained angle between the bodies: body2_angle - body1_angle.
|
||||
float32 referenceAngle;
|
||||
|
||||
/// Enable/disable the joint limit.
|
||||
bool enableLimit;
|
||||
|
||||
/// The lower translation limit, usually in meters.
|
||||
float32 lowerTranslation;
|
||||
|
||||
/// The upper translation limit, usually in meters.
|
||||
float32 upperTranslation;
|
||||
|
||||
/// Enable/disable the joint motor.
|
||||
bool enableMotor;
|
||||
|
||||
/// The maximum motor torque, usually in N-m.
|
||||
float32 maxMotorForce;
|
||||
|
||||
/// The desired motor speed in radians per second.
|
||||
float32 motorSpeed;
|
||||
};
|
||||
|
||||
/// A prismatic joint. This joint provides one degree of freedom: translation
|
||||
/// along an axis fixed in body1. Relative rotation is prevented. You can
|
||||
/// use a joint limit to restrict the range of motion and a joint motor to
|
||||
/// drive the motion or to model joint friction.
|
||||
class b2PrismaticJoint : public b2Joint
|
||||
{
|
||||
public:
|
||||
b2Vec2 GetAnchorA() const;
|
||||
b2Vec2 GetAnchorB() const;
|
||||
|
||||
b2Vec2 GetReactionForce(float32 inv_dt) const;
|
||||
float32 GetReactionTorque(float32 inv_dt) const;
|
||||
|
||||
/// Get the current joint translation, usually in meters.
|
||||
float32 GetJointTranslation() const;
|
||||
|
||||
/// Get the current joint translation speed, usually in meters per second.
|
||||
float32 GetJointSpeed() const;
|
||||
|
||||
/// Is the joint limit enabled?
|
||||
bool IsLimitEnabled() const;
|
||||
|
||||
/// Enable/disable the joint limit.
|
||||
void EnableLimit(bool flag);
|
||||
|
||||
/// Get the lower joint limit, usually in meters.
|
||||
float32 GetLowerLimit() const;
|
||||
|
||||
/// Get the upper joint limit, usually in meters.
|
||||
float32 GetUpperLimit() const;
|
||||
|
||||
/// Set the joint limits, usually in meters.
|
||||
void SetLimits(float32 lower, float32 upper);
|
||||
|
||||
/// Is the joint motor enabled?
|
||||
bool IsMotorEnabled() const;
|
||||
|
||||
/// Enable/disable the joint motor.
|
||||
void EnableMotor(bool flag);
|
||||
|
||||
/// Set the motor speed, usually in meters per second.
|
||||
void SetMotorSpeed(float32 speed);
|
||||
|
||||
/// Get the motor speed, usually in meters per second.
|
||||
float32 GetMotorSpeed() const;
|
||||
|
||||
/// Set the maximum motor force, usually in N.
|
||||
void SetMaxMotorForce(float32 force);
|
||||
|
||||
/// Get the current motor force, usually in N.
|
||||
float32 GetMotorForce() const;
|
||||
|
||||
protected:
|
||||
friend class b2Joint;
|
||||
friend class b2GearJoint;
|
||||
b2PrismaticJoint(const b2PrismaticJointDef* def);
|
||||
|
||||
void InitVelocityConstraints(const b2TimeStep& step);
|
||||
void SolveVelocityConstraints(const b2TimeStep& step);
|
||||
bool SolvePositionConstraints(float32 baumgarte);
|
||||
|
||||
b2Vec2 m_localAnchor1;
|
||||
b2Vec2 m_localAnchor2;
|
||||
b2Vec2 m_localXAxis1;
|
||||
b2Vec2 m_localYAxis1;
|
||||
float32 m_refAngle;
|
||||
|
||||
b2Vec2 m_axis, m_perp;
|
||||
float32 m_s1, m_s2;
|
||||
float32 m_a1, m_a2;
|
||||
|
||||
b2Mat33 m_K;
|
||||
b2Vec3 m_impulse;
|
||||
|
||||
float32 m_motorMass; // effective mass for motor/limit translational constraint.
|
||||
float32 m_motorImpulse;
|
||||
|
||||
float32 m_lowerTranslation;
|
||||
float32 m_upperTranslation;
|
||||
float32 m_maxMotorForce;
|
||||
float32 m_motorSpeed;
|
||||
|
||||
bool m_enableLimit;
|
||||
bool m_enableMotor;
|
||||
b2LimitState m_limitState;
|
||||
};
|
||||
|
||||
inline float32 b2PrismaticJoint::GetMotorSpeed() const
|
||||
{
|
||||
return m_motorSpeed;
|
||||
}
|
||||
|
||||
#endif
|
||||
427
AndEngine/jni/Box2D/Dynamics/Joints/b2PulleyJoint.cpp
Normal file
427
AndEngine/jni/Box2D/Dynamics/Joints/b2PulleyJoint.cpp
Normal file
@@ -0,0 +1,427 @@
|
||||
/*
|
||||
* Copyright (c) 2007 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#include "Box2D/Dynamics/Joints/b2PulleyJoint.h"
|
||||
#include "Box2D/Dynamics/b2Body.h"
|
||||
#include "Box2D/Dynamics/b2TimeStep.h"
|
||||
|
||||
// Pulley:
|
||||
// length1 = norm(p1 - s1)
|
||||
// length2 = norm(p2 - s2)
|
||||
// C0 = (length1 + ratio * length2)_initial
|
||||
// C = C0 - (length1 + ratio * length2) >= 0
|
||||
// u1 = (p1 - s1) / norm(p1 - s1)
|
||||
// u2 = (p2 - s2) / norm(p2 - s2)
|
||||
// Cdot = -dot(u1, v1 + cross(w1, r1)) - ratio * dot(u2, v2 + cross(w2, r2))
|
||||
// J = -[u1 cross(r1, u1) ratio * u2 ratio * cross(r2, u2)]
|
||||
// K = J * invM * JT
|
||||
// = invMass1 + invI1 * cross(r1, u1)^2 + ratio^2 * (invMass2 + invI2 * cross(r2, u2)^2)
|
||||
//
|
||||
// Limit:
|
||||
// C = maxLength - length
|
||||
// u = (p - s) / norm(p - s)
|
||||
// Cdot = -dot(u, v + cross(w, r))
|
||||
// K = invMass + invI * cross(r, u)^2
|
||||
// 0 <= impulse
|
||||
|
||||
void b2PulleyJointDef::Initialize(b2Body* b1, b2Body* b2,
|
||||
const b2Vec2& ga1, const b2Vec2& ga2,
|
||||
const b2Vec2& anchor1, const b2Vec2& anchor2,
|
||||
float32 r)
|
||||
{
|
||||
bodyA = b1;
|
||||
bodyB = b2;
|
||||
groundAnchorA = ga1;
|
||||
groundAnchorB = ga2;
|
||||
localAnchorA = bodyA->GetLocalPoint(anchor1);
|
||||
localAnchorB = bodyB->GetLocalPoint(anchor2);
|
||||
b2Vec2 d1 = anchor1 - ga1;
|
||||
lengthA = d1.Length();
|
||||
b2Vec2 d2 = anchor2 - ga2;
|
||||
lengthB = d2.Length();
|
||||
ratio = r;
|
||||
b2Assert(ratio > b2_epsilon);
|
||||
float32 C = lengthA + ratio * lengthB;
|
||||
maxLengthA = C - ratio * b2_minPulleyLength;
|
||||
maxLengthB = (C - b2_minPulleyLength) / ratio;
|
||||
}
|
||||
|
||||
b2PulleyJoint::b2PulleyJoint(const b2PulleyJointDef* def)
|
||||
: b2Joint(def)
|
||||
{
|
||||
m_groundAnchor1 = def->groundAnchorA;
|
||||
m_groundAnchor2 = def->groundAnchorB;
|
||||
m_localAnchor1 = def->localAnchorA;
|
||||
m_localAnchor2 = def->localAnchorB;
|
||||
|
||||
b2Assert(def->ratio != 0.0f);
|
||||
m_ratio = def->ratio;
|
||||
|
||||
m_constant = def->lengthA + m_ratio * def->lengthB;
|
||||
|
||||
m_maxLength1 = b2Min(def->maxLengthA, m_constant - m_ratio * b2_minPulleyLength);
|
||||
m_maxLength2 = b2Min(def->maxLengthB, (m_constant - b2_minPulleyLength) / m_ratio);
|
||||
|
||||
m_impulse = 0.0f;
|
||||
m_limitImpulse1 = 0.0f;
|
||||
m_limitImpulse2 = 0.0f;
|
||||
}
|
||||
|
||||
void b2PulleyJoint::InitVelocityConstraints(const b2TimeStep& step)
|
||||
{
|
||||
b2Body* b1 = m_bodyA;
|
||||
b2Body* b2 = m_bodyB;
|
||||
|
||||
b2Vec2 r1 = b2Mul(b1->GetTransform().R, m_localAnchor1 - b1->GetLocalCenter());
|
||||
b2Vec2 r2 = b2Mul(b2->GetTransform().R, m_localAnchor2 - b2->GetLocalCenter());
|
||||
|
||||
b2Vec2 p1 = b1->m_sweep.c + r1;
|
||||
b2Vec2 p2 = b2->m_sweep.c + r2;
|
||||
|
||||
b2Vec2 s1 = m_groundAnchor1;
|
||||
b2Vec2 s2 = m_groundAnchor2;
|
||||
|
||||
// Get the pulley axes.
|
||||
m_u1 = p1 - s1;
|
||||
m_u2 = p2 - s2;
|
||||
|
||||
float32 length1 = m_u1.Length();
|
||||
float32 length2 = m_u2.Length();
|
||||
|
||||
if (length1 > b2_linearSlop)
|
||||
{
|
||||
m_u1 *= 1.0f / length1;
|
||||
}
|
||||
else
|
||||
{
|
||||
m_u1.SetZero();
|
||||
}
|
||||
|
||||
if (length2 > b2_linearSlop)
|
||||
{
|
||||
m_u2 *= 1.0f / length2;
|
||||
}
|
||||
else
|
||||
{
|
||||
m_u2.SetZero();
|
||||
}
|
||||
|
||||
float32 C = m_constant - length1 - m_ratio * length2;
|
||||
if (C > 0.0f)
|
||||
{
|
||||
m_state = e_inactiveLimit;
|
||||
m_impulse = 0.0f;
|
||||
}
|
||||
else
|
||||
{
|
||||
m_state = e_atUpperLimit;
|
||||
}
|
||||
|
||||
if (length1 < m_maxLength1)
|
||||
{
|
||||
m_limitState1 = e_inactiveLimit;
|
||||
m_limitImpulse1 = 0.0f;
|
||||
}
|
||||
else
|
||||
{
|
||||
m_limitState1 = e_atUpperLimit;
|
||||
}
|
||||
|
||||
if (length2 < m_maxLength2)
|
||||
{
|
||||
m_limitState2 = e_inactiveLimit;
|
||||
m_limitImpulse2 = 0.0f;
|
||||
}
|
||||
else
|
||||
{
|
||||
m_limitState2 = e_atUpperLimit;
|
||||
}
|
||||
|
||||
// Compute effective mass.
|
||||
float32 cr1u1 = b2Cross(r1, m_u1);
|
||||
float32 cr2u2 = b2Cross(r2, m_u2);
|
||||
|
||||
m_limitMass1 = b1->m_invMass + b1->m_invI * cr1u1 * cr1u1;
|
||||
m_limitMass2 = b2->m_invMass + b2->m_invI * cr2u2 * cr2u2;
|
||||
m_pulleyMass = m_limitMass1 + m_ratio * m_ratio * m_limitMass2;
|
||||
b2Assert(m_limitMass1 > b2_epsilon);
|
||||
b2Assert(m_limitMass2 > b2_epsilon);
|
||||
b2Assert(m_pulleyMass > b2_epsilon);
|
||||
m_limitMass1 = 1.0f / m_limitMass1;
|
||||
m_limitMass2 = 1.0f / m_limitMass2;
|
||||
m_pulleyMass = 1.0f / m_pulleyMass;
|
||||
|
||||
if (step.warmStarting)
|
||||
{
|
||||
// Scale impulses to support variable time steps.
|
||||
m_impulse *= step.dtRatio;
|
||||
m_limitImpulse1 *= step.dtRatio;
|
||||
m_limitImpulse2 *= step.dtRatio;
|
||||
|
||||
// Warm starting.
|
||||
b2Vec2 P1 = -(m_impulse + m_limitImpulse1) * m_u1;
|
||||
b2Vec2 P2 = (-m_ratio * m_impulse - m_limitImpulse2) * m_u2;
|
||||
b1->m_linearVelocity += b1->m_invMass * P1;
|
||||
b1->m_angularVelocity += b1->m_invI * b2Cross(r1, P1);
|
||||
b2->m_linearVelocity += b2->m_invMass * P2;
|
||||
b2->m_angularVelocity += b2->m_invI * b2Cross(r2, P2);
|
||||
}
|
||||
else
|
||||
{
|
||||
m_impulse = 0.0f;
|
||||
m_limitImpulse1 = 0.0f;
|
||||
m_limitImpulse2 = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
void b2PulleyJoint::SolveVelocityConstraints(const b2TimeStep& step)
|
||||
{
|
||||
B2_NOT_USED(step);
|
||||
|
||||
b2Body* b1 = m_bodyA;
|
||||
b2Body* b2 = m_bodyB;
|
||||
|
||||
b2Vec2 r1 = b2Mul(b1->GetTransform().R, m_localAnchor1 - b1->GetLocalCenter());
|
||||
b2Vec2 r2 = b2Mul(b2->GetTransform().R, m_localAnchor2 - b2->GetLocalCenter());
|
||||
|
||||
if (m_state == e_atUpperLimit)
|
||||
{
|
||||
b2Vec2 v1 = b1->m_linearVelocity + b2Cross(b1->m_angularVelocity, r1);
|
||||
b2Vec2 v2 = b2->m_linearVelocity + b2Cross(b2->m_angularVelocity, r2);
|
||||
|
||||
float32 Cdot = -b2Dot(m_u1, v1) - m_ratio * b2Dot(m_u2, v2);
|
||||
float32 impulse = m_pulleyMass * (-Cdot);
|
||||
float32 oldImpulse = m_impulse;
|
||||
m_impulse = b2Max(0.0f, m_impulse + impulse);
|
||||
impulse = m_impulse - oldImpulse;
|
||||
|
||||
b2Vec2 P1 = -impulse * m_u1;
|
||||
b2Vec2 P2 = -m_ratio * impulse * m_u2;
|
||||
b1->m_linearVelocity += b1->m_invMass * P1;
|
||||
b1->m_angularVelocity += b1->m_invI * b2Cross(r1, P1);
|
||||
b2->m_linearVelocity += b2->m_invMass * P2;
|
||||
b2->m_angularVelocity += b2->m_invI * b2Cross(r2, P2);
|
||||
}
|
||||
|
||||
if (m_limitState1 == e_atUpperLimit)
|
||||
{
|
||||
b2Vec2 v1 = b1->m_linearVelocity + b2Cross(b1->m_angularVelocity, r1);
|
||||
|
||||
float32 Cdot = -b2Dot(m_u1, v1);
|
||||
float32 impulse = -m_limitMass1 * Cdot;
|
||||
float32 oldImpulse = m_limitImpulse1;
|
||||
m_limitImpulse1 = b2Max(0.0f, m_limitImpulse1 + impulse);
|
||||
impulse = m_limitImpulse1 - oldImpulse;
|
||||
|
||||
b2Vec2 P1 = -impulse * m_u1;
|
||||
b1->m_linearVelocity += b1->m_invMass * P1;
|
||||
b1->m_angularVelocity += b1->m_invI * b2Cross(r1, P1);
|
||||
}
|
||||
|
||||
if (m_limitState2 == e_atUpperLimit)
|
||||
{
|
||||
b2Vec2 v2 = b2->m_linearVelocity + b2Cross(b2->m_angularVelocity, r2);
|
||||
|
||||
float32 Cdot = -b2Dot(m_u2, v2);
|
||||
float32 impulse = -m_limitMass2 * Cdot;
|
||||
float32 oldImpulse = m_limitImpulse2;
|
||||
m_limitImpulse2 = b2Max(0.0f, m_limitImpulse2 + impulse);
|
||||
impulse = m_limitImpulse2 - oldImpulse;
|
||||
|
||||
b2Vec2 P2 = -impulse * m_u2;
|
||||
b2->m_linearVelocity += b2->m_invMass * P2;
|
||||
b2->m_angularVelocity += b2->m_invI * b2Cross(r2, P2);
|
||||
}
|
||||
}
|
||||
|
||||
bool b2PulleyJoint::SolvePositionConstraints(float32 baumgarte)
|
||||
{
|
||||
B2_NOT_USED(baumgarte);
|
||||
|
||||
b2Body* b1 = m_bodyA;
|
||||
b2Body* b2 = m_bodyB;
|
||||
|
||||
b2Vec2 s1 = m_groundAnchor1;
|
||||
b2Vec2 s2 = m_groundAnchor2;
|
||||
|
||||
float32 linearError = 0.0f;
|
||||
|
||||
if (m_state == e_atUpperLimit)
|
||||
{
|
||||
b2Vec2 r1 = b2Mul(b1->GetTransform().R, m_localAnchor1 - b1->GetLocalCenter());
|
||||
b2Vec2 r2 = b2Mul(b2->GetTransform().R, m_localAnchor2 - b2->GetLocalCenter());
|
||||
|
||||
b2Vec2 p1 = b1->m_sweep.c + r1;
|
||||
b2Vec2 p2 = b2->m_sweep.c + r2;
|
||||
|
||||
// Get the pulley axes.
|
||||
m_u1 = p1 - s1;
|
||||
m_u2 = p2 - s2;
|
||||
|
||||
float32 length1 = m_u1.Length();
|
||||
float32 length2 = m_u2.Length();
|
||||
|
||||
if (length1 > b2_linearSlop)
|
||||
{
|
||||
m_u1 *= 1.0f / length1;
|
||||
}
|
||||
else
|
||||
{
|
||||
m_u1.SetZero();
|
||||
}
|
||||
|
||||
if (length2 > b2_linearSlop)
|
||||
{
|
||||
m_u2 *= 1.0f / length2;
|
||||
}
|
||||
else
|
||||
{
|
||||
m_u2.SetZero();
|
||||
}
|
||||
|
||||
float32 C = m_constant - length1 - m_ratio * length2;
|
||||
linearError = b2Max(linearError, -C);
|
||||
|
||||
C = b2Clamp(C + b2_linearSlop, -b2_maxLinearCorrection, 0.0f);
|
||||
float32 impulse = -m_pulleyMass * C;
|
||||
|
||||
b2Vec2 P1 = -impulse * m_u1;
|
||||
b2Vec2 P2 = -m_ratio * impulse * m_u2;
|
||||
|
||||
b1->m_sweep.c += b1->m_invMass * P1;
|
||||
b1->m_sweep.a += b1->m_invI * b2Cross(r1, P1);
|
||||
b2->m_sweep.c += b2->m_invMass * P2;
|
||||
b2->m_sweep.a += b2->m_invI * b2Cross(r2, P2);
|
||||
|
||||
b1->SynchronizeTransform();
|
||||
b2->SynchronizeTransform();
|
||||
}
|
||||
|
||||
if (m_limitState1 == e_atUpperLimit)
|
||||
{
|
||||
b2Vec2 r1 = b2Mul(b1->GetTransform().R, m_localAnchor1 - b1->GetLocalCenter());
|
||||
b2Vec2 p1 = b1->m_sweep.c + r1;
|
||||
|
||||
m_u1 = p1 - s1;
|
||||
float32 length1 = m_u1.Length();
|
||||
|
||||
if (length1 > b2_linearSlop)
|
||||
{
|
||||
m_u1 *= 1.0f / length1;
|
||||
}
|
||||
else
|
||||
{
|
||||
m_u1.SetZero();
|
||||
}
|
||||
|
||||
float32 C = m_maxLength1 - length1;
|
||||
linearError = b2Max(linearError, -C);
|
||||
C = b2Clamp(C + b2_linearSlop, -b2_maxLinearCorrection, 0.0f);
|
||||
float32 impulse = -m_limitMass1 * C;
|
||||
|
||||
b2Vec2 P1 = -impulse * m_u1;
|
||||
b1->m_sweep.c += b1->m_invMass * P1;
|
||||
b1->m_sweep.a += b1->m_invI * b2Cross(r1, P1);
|
||||
|
||||
b1->SynchronizeTransform();
|
||||
}
|
||||
|
||||
if (m_limitState2 == e_atUpperLimit)
|
||||
{
|
||||
b2Vec2 r2 = b2Mul(b2->GetTransform().R, m_localAnchor2 - b2->GetLocalCenter());
|
||||
b2Vec2 p2 = b2->m_sweep.c + r2;
|
||||
|
||||
m_u2 = p2 - s2;
|
||||
float32 length2 = m_u2.Length();
|
||||
|
||||
if (length2 > b2_linearSlop)
|
||||
{
|
||||
m_u2 *= 1.0f / length2;
|
||||
}
|
||||
else
|
||||
{
|
||||
m_u2.SetZero();
|
||||
}
|
||||
|
||||
float32 C = m_maxLength2 - length2;
|
||||
linearError = b2Max(linearError, -C);
|
||||
C = b2Clamp(C + b2_linearSlop, -b2_maxLinearCorrection, 0.0f);
|
||||
float32 impulse = -m_limitMass2 * C;
|
||||
|
||||
b2Vec2 P2 = -impulse * m_u2;
|
||||
b2->m_sweep.c += b2->m_invMass * P2;
|
||||
b2->m_sweep.a += b2->m_invI * b2Cross(r2, P2);
|
||||
|
||||
b2->SynchronizeTransform();
|
||||
}
|
||||
|
||||
return linearError < b2_linearSlop;
|
||||
}
|
||||
|
||||
b2Vec2 b2PulleyJoint::GetAnchorA() const
|
||||
{
|
||||
return m_bodyA->GetWorldPoint(m_localAnchor1);
|
||||
}
|
||||
|
||||
b2Vec2 b2PulleyJoint::GetAnchorB() const
|
||||
{
|
||||
return m_bodyB->GetWorldPoint(m_localAnchor2);
|
||||
}
|
||||
|
||||
b2Vec2 b2PulleyJoint::GetReactionForce(float32 inv_dt) const
|
||||
{
|
||||
b2Vec2 P = m_impulse * m_u2;
|
||||
return inv_dt * P;
|
||||
}
|
||||
|
||||
float32 b2PulleyJoint::GetReactionTorque(float32 inv_dt) const
|
||||
{
|
||||
B2_NOT_USED(inv_dt);
|
||||
return 0.0f;
|
||||
}
|
||||
|
||||
b2Vec2 b2PulleyJoint::GetGroundAnchorA() const
|
||||
{
|
||||
return m_groundAnchor1;
|
||||
}
|
||||
|
||||
b2Vec2 b2PulleyJoint::GetGroundAnchorB() const
|
||||
{
|
||||
return m_groundAnchor2;
|
||||
}
|
||||
|
||||
float32 b2PulleyJoint::GetLength1() const
|
||||
{
|
||||
b2Vec2 p = m_bodyA->GetWorldPoint(m_localAnchor1);
|
||||
b2Vec2 s = m_groundAnchor1;
|
||||
b2Vec2 d = p - s;
|
||||
return d.Length();
|
||||
}
|
||||
|
||||
float32 b2PulleyJoint::GetLength2() const
|
||||
{
|
||||
b2Vec2 p = m_bodyB->GetWorldPoint(m_localAnchor2);
|
||||
b2Vec2 s = m_groundAnchor2;
|
||||
b2Vec2 d = p - s;
|
||||
return d.Length();
|
||||
}
|
||||
|
||||
float32 b2PulleyJoint::GetRatio() const
|
||||
{
|
||||
return m_ratio;
|
||||
}
|
||||
148
AndEngine/jni/Box2D/Dynamics/Joints/b2PulleyJoint.h
Normal file
148
AndEngine/jni/Box2D/Dynamics/Joints/b2PulleyJoint.h
Normal file
@@ -0,0 +1,148 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef B2_PULLEY_JOINT_H
|
||||
#define B2_PULLEY_JOINT_H
|
||||
|
||||
#include "Box2D/Dynamics/Joints/b2Joint.h"
|
||||
|
||||
const float32 b2_minPulleyLength = 2.0f;
|
||||
|
||||
/// Pulley joint definition. This requires two ground anchors,
|
||||
/// two dynamic body anchor points, max lengths for each side,
|
||||
/// and a pulley ratio.
|
||||
struct b2PulleyJointDef : public b2JointDef
|
||||
{
|
||||
b2PulleyJointDef()
|
||||
{
|
||||
type = e_pulleyJoint;
|
||||
groundAnchorA.Set(-1.0f, 1.0f);
|
||||
groundAnchorB.Set(1.0f, 1.0f);
|
||||
localAnchorA.Set(-1.0f, 0.0f);
|
||||
localAnchorB.Set(1.0f, 0.0f);
|
||||
lengthA = 0.0f;
|
||||
maxLengthA = 0.0f;
|
||||
lengthB = 0.0f;
|
||||
maxLengthB = 0.0f;
|
||||
ratio = 1.0f;
|
||||
collideConnected = true;
|
||||
}
|
||||
|
||||
/// Initialize the bodies, anchors, lengths, max lengths, and ratio using the world anchors.
|
||||
void Initialize(b2Body* bodyA, b2Body* bodyB,
|
||||
const b2Vec2& groundAnchorA, const b2Vec2& groundAnchorB,
|
||||
const b2Vec2& anchorA, const b2Vec2& anchorB,
|
||||
float32 ratio);
|
||||
|
||||
/// The first ground anchor in world coordinates. This point never moves.
|
||||
b2Vec2 groundAnchorA;
|
||||
|
||||
/// The second ground anchor in world coordinates. This point never moves.
|
||||
b2Vec2 groundAnchorB;
|
||||
|
||||
/// The local anchor point relative to bodyA's origin.
|
||||
b2Vec2 localAnchorA;
|
||||
|
||||
/// The local anchor point relative to bodyB's origin.
|
||||
b2Vec2 localAnchorB;
|
||||
|
||||
/// The a reference length for the segment attached to bodyA.
|
||||
float32 lengthA;
|
||||
|
||||
/// The maximum length of the segment attached to bodyA.
|
||||
float32 maxLengthA;
|
||||
|
||||
/// The a reference length for the segment attached to bodyB.
|
||||
float32 lengthB;
|
||||
|
||||
/// The maximum length of the segment attached to bodyB.
|
||||
float32 maxLengthB;
|
||||
|
||||
/// The pulley ratio, used to simulate a block-and-tackle.
|
||||
float32 ratio;
|
||||
};
|
||||
|
||||
/// The pulley joint is connected to two bodies and two fixed ground points.
|
||||
/// The pulley supports a ratio such that:
|
||||
/// length1 + ratio * length2 <= constant
|
||||
/// Yes, the force transmitted is scaled by the ratio.
|
||||
/// The pulley also enforces a maximum length limit on both sides. This is
|
||||
/// useful to prevent one side of the pulley hitting the top.
|
||||
class b2PulleyJoint : public b2Joint
|
||||
{
|
||||
public:
|
||||
b2Vec2 GetAnchorA() const;
|
||||
b2Vec2 GetAnchorB() const;
|
||||
|
||||
b2Vec2 GetReactionForce(float32 inv_dt) const;
|
||||
float32 GetReactionTorque(float32 inv_dt) const;
|
||||
|
||||
/// Get the first ground anchor.
|
||||
b2Vec2 GetGroundAnchorA() const;
|
||||
|
||||
/// Get the second ground anchor.
|
||||
b2Vec2 GetGroundAnchorB() const;
|
||||
|
||||
/// Get the current length of the segment attached to body1.
|
||||
float32 GetLength1() const;
|
||||
|
||||
/// Get the current length of the segment attached to body2.
|
||||
float32 GetLength2() const;
|
||||
|
||||
/// Get the pulley ratio.
|
||||
float32 GetRatio() const;
|
||||
|
||||
protected:
|
||||
|
||||
friend class b2Joint;
|
||||
b2PulleyJoint(const b2PulleyJointDef* data);
|
||||
|
||||
void InitVelocityConstraints(const b2TimeStep& step);
|
||||
void SolveVelocityConstraints(const b2TimeStep& step);
|
||||
bool SolvePositionConstraints(float32 baumgarte);
|
||||
|
||||
b2Vec2 m_groundAnchor1;
|
||||
b2Vec2 m_groundAnchor2;
|
||||
b2Vec2 m_localAnchor1;
|
||||
b2Vec2 m_localAnchor2;
|
||||
|
||||
b2Vec2 m_u1;
|
||||
b2Vec2 m_u2;
|
||||
|
||||
float32 m_constant;
|
||||
float32 m_ratio;
|
||||
|
||||
float32 m_maxLength1;
|
||||
float32 m_maxLength2;
|
||||
|
||||
// Effective masses
|
||||
float32 m_pulleyMass;
|
||||
float32 m_limitMass1;
|
||||
float32 m_limitMass2;
|
||||
|
||||
// Impulses for accumulation/warm starting.
|
||||
float32 m_impulse;
|
||||
float32 m_limitImpulse1;
|
||||
float32 m_limitImpulse2;
|
||||
|
||||
b2LimitState m_state;
|
||||
b2LimitState m_limitState1;
|
||||
b2LimitState m_limitState2;
|
||||
};
|
||||
|
||||
#endif
|
||||
478
AndEngine/jni/Box2D/Dynamics/Joints/b2RevoluteJoint.cpp
Normal file
478
AndEngine/jni/Box2D/Dynamics/Joints/b2RevoluteJoint.cpp
Normal file
@@ -0,0 +1,478 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#include "Box2D/Dynamics/Joints/b2RevoluteJoint.h"
|
||||
#include "Box2D/Dynamics/b2Body.h"
|
||||
#include "Box2D/Dynamics/b2TimeStep.h"
|
||||
|
||||
// Point-to-point constraint
|
||||
// C = p2 - p1
|
||||
// Cdot = v2 - v1
|
||||
// = v2 + cross(w2, r2) - v1 - cross(w1, r1)
|
||||
// J = [-I -r1_skew I r2_skew ]
|
||||
// Identity used:
|
||||
// w k % (rx i + ry j) = w * (-ry i + rx j)
|
||||
|
||||
// Motor constraint
|
||||
// Cdot = w2 - w1
|
||||
// J = [0 0 -1 0 0 1]
|
||||
// K = invI1 + invI2
|
||||
|
||||
void b2RevoluteJointDef::Initialize(b2Body* b1, b2Body* b2, const b2Vec2& anchor)
|
||||
{
|
||||
bodyA = b1;
|
||||
bodyB = b2;
|
||||
localAnchorA = bodyA->GetLocalPoint(anchor);
|
||||
localAnchorB = bodyB->GetLocalPoint(anchor);
|
||||
referenceAngle = bodyB->GetAngle() - bodyA->GetAngle();
|
||||
}
|
||||
|
||||
b2RevoluteJoint::b2RevoluteJoint(const b2RevoluteJointDef* def)
|
||||
: b2Joint(def)
|
||||
{
|
||||
m_localAnchor1 = def->localAnchorA;
|
||||
m_localAnchor2 = def->localAnchorB;
|
||||
m_referenceAngle = def->referenceAngle;
|
||||
|
||||
m_impulse.SetZero();
|
||||
m_motorImpulse = 0.0f;
|
||||
|
||||
m_lowerAngle = def->lowerAngle;
|
||||
m_upperAngle = def->upperAngle;
|
||||
m_maxMotorTorque = def->maxMotorTorque;
|
||||
m_motorSpeed = def->motorSpeed;
|
||||
m_enableLimit = def->enableLimit;
|
||||
m_enableMotor = def->enableMotor;
|
||||
m_limitState = e_inactiveLimit;
|
||||
}
|
||||
|
||||
void b2RevoluteJoint::InitVelocityConstraints(const b2TimeStep& step)
|
||||
{
|
||||
b2Body* b1 = m_bodyA;
|
||||
b2Body* b2 = m_bodyB;
|
||||
|
||||
if (m_enableMotor || m_enableLimit)
|
||||
{
|
||||
// You cannot create a rotation limit between bodies that
|
||||
// both have fixed rotation.
|
||||
b2Assert(b1->m_invI > 0.0f || b2->m_invI > 0.0f);
|
||||
}
|
||||
|
||||
// Compute the effective mass matrix.
|
||||
b2Vec2 r1 = b2Mul(b1->GetTransform().R, m_localAnchor1 - b1->GetLocalCenter());
|
||||
b2Vec2 r2 = b2Mul(b2->GetTransform().R, m_localAnchor2 - b2->GetLocalCenter());
|
||||
|
||||
// J = [-I -r1_skew I r2_skew]
|
||||
// [ 0 -1 0 1]
|
||||
// r_skew = [-ry; rx]
|
||||
|
||||
// Matlab
|
||||
// K = [ m1+r1y^2*i1+m2+r2y^2*i2, -r1y*i1*r1x-r2y*i2*r2x, -r1y*i1-r2y*i2]
|
||||
// [ -r1y*i1*r1x-r2y*i2*r2x, m1+r1x^2*i1+m2+r2x^2*i2, r1x*i1+r2x*i2]
|
||||
// [ -r1y*i1-r2y*i2, r1x*i1+r2x*i2, i1+i2]
|
||||
|
||||
float32 m1 = b1->m_invMass, m2 = b2->m_invMass;
|
||||
float32 i1 = b1->m_invI, i2 = b2->m_invI;
|
||||
|
||||
m_mass.col1.x = m1 + m2 + r1.y * r1.y * i1 + r2.y * r2.y * i2;
|
||||
m_mass.col2.x = -r1.y * r1.x * i1 - r2.y * r2.x * i2;
|
||||
m_mass.col3.x = -r1.y * i1 - r2.y * i2;
|
||||
m_mass.col1.y = m_mass.col2.x;
|
||||
m_mass.col2.y = m1 + m2 + r1.x * r1.x * i1 + r2.x * r2.x * i2;
|
||||
m_mass.col3.y = r1.x * i1 + r2.x * i2;
|
||||
m_mass.col1.z = m_mass.col3.x;
|
||||
m_mass.col2.z = m_mass.col3.y;
|
||||
m_mass.col3.z = i1 + i2;
|
||||
|
||||
m_motorMass = i1 + i2;
|
||||
if (m_motorMass > 0.0f)
|
||||
{
|
||||
m_motorMass = 1.0f / m_motorMass;
|
||||
}
|
||||
|
||||
if (m_enableMotor == false)
|
||||
{
|
||||
m_motorImpulse = 0.0f;
|
||||
}
|
||||
|
||||
if (m_enableLimit)
|
||||
{
|
||||
float32 jointAngle = b2->m_sweep.a - b1->m_sweep.a - m_referenceAngle;
|
||||
if (b2Abs(m_upperAngle - m_lowerAngle) < 2.0f * b2_angularSlop)
|
||||
{
|
||||
m_limitState = e_equalLimits;
|
||||
}
|
||||
else if (jointAngle <= m_lowerAngle)
|
||||
{
|
||||
if (m_limitState != e_atLowerLimit)
|
||||
{
|
||||
m_impulse.z = 0.0f;
|
||||
}
|
||||
m_limitState = e_atLowerLimit;
|
||||
}
|
||||
else if (jointAngle >= m_upperAngle)
|
||||
{
|
||||
if (m_limitState != e_atUpperLimit)
|
||||
{
|
||||
m_impulse.z = 0.0f;
|
||||
}
|
||||
m_limitState = e_atUpperLimit;
|
||||
}
|
||||
else
|
||||
{
|
||||
m_limitState = e_inactiveLimit;
|
||||
m_impulse.z = 0.0f;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
m_limitState = e_inactiveLimit;
|
||||
}
|
||||
|
||||
if (step.warmStarting)
|
||||
{
|
||||
// Scale impulses to support a variable time step.
|
||||
m_impulse *= step.dtRatio;
|
||||
m_motorImpulse *= step.dtRatio;
|
||||
|
||||
b2Vec2 P(m_impulse.x, m_impulse.y);
|
||||
|
||||
b1->m_linearVelocity -= m1 * P;
|
||||
b1->m_angularVelocity -= i1 * (b2Cross(r1, P) + m_motorImpulse + m_impulse.z);
|
||||
|
||||
b2->m_linearVelocity += m2 * P;
|
||||
b2->m_angularVelocity += i2 * (b2Cross(r2, P) + m_motorImpulse + m_impulse.z);
|
||||
}
|
||||
else
|
||||
{
|
||||
m_impulse.SetZero();
|
||||
m_motorImpulse = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
void b2RevoluteJoint::SolveVelocityConstraints(const b2TimeStep& step)
|
||||
{
|
||||
b2Body* b1 = m_bodyA;
|
||||
b2Body* b2 = m_bodyB;
|
||||
|
||||
b2Vec2 v1 = b1->m_linearVelocity;
|
||||
float32 w1 = b1->m_angularVelocity;
|
||||
b2Vec2 v2 = b2->m_linearVelocity;
|
||||
float32 w2 = b2->m_angularVelocity;
|
||||
|
||||
float32 m1 = b1->m_invMass, m2 = b2->m_invMass;
|
||||
float32 i1 = b1->m_invI, i2 = b2->m_invI;
|
||||
|
||||
// Solve motor constraint.
|
||||
if (m_enableMotor && m_limitState != e_equalLimits)
|
||||
{
|
||||
float32 Cdot = w2 - w1 - m_motorSpeed;
|
||||
float32 impulse = m_motorMass * (-Cdot);
|
||||
float32 oldImpulse = m_motorImpulse;
|
||||
float32 maxImpulse = step.dt * m_maxMotorTorque;
|
||||
m_motorImpulse = b2Clamp(m_motorImpulse + impulse, -maxImpulse, maxImpulse);
|
||||
impulse = m_motorImpulse - oldImpulse;
|
||||
|
||||
w1 -= i1 * impulse;
|
||||
w2 += i2 * impulse;
|
||||
}
|
||||
|
||||
// Solve limit constraint.
|
||||
if (m_enableLimit && m_limitState != e_inactiveLimit)
|
||||
{
|
||||
b2Vec2 r1 = b2Mul(b1->GetTransform().R, m_localAnchor1 - b1->GetLocalCenter());
|
||||
b2Vec2 r2 = b2Mul(b2->GetTransform().R, m_localAnchor2 - b2->GetLocalCenter());
|
||||
|
||||
// Solve point-to-point constraint
|
||||
b2Vec2 Cdot1 = v2 + b2Cross(w2, r2) - v1 - b2Cross(w1, r1);
|
||||
float32 Cdot2 = w2 - w1;
|
||||
b2Vec3 Cdot(Cdot1.x, Cdot1.y, Cdot2);
|
||||
|
||||
b2Vec3 impulse = m_mass.Solve33(-Cdot);
|
||||
|
||||
if (m_limitState == e_equalLimits)
|
||||
{
|
||||
m_impulse += impulse;
|
||||
}
|
||||
else if (m_limitState == e_atLowerLimit)
|
||||
{
|
||||
float32 newImpulse = m_impulse.z + impulse.z;
|
||||
if (newImpulse < 0.0f)
|
||||
{
|
||||
b2Vec2 reduced = m_mass.Solve22(-Cdot1);
|
||||
impulse.x = reduced.x;
|
||||
impulse.y = reduced.y;
|
||||
impulse.z = -m_impulse.z;
|
||||
m_impulse.x += reduced.x;
|
||||
m_impulse.y += reduced.y;
|
||||
m_impulse.z = 0.0f;
|
||||
}
|
||||
}
|
||||
else if (m_limitState == e_atUpperLimit)
|
||||
{
|
||||
float32 newImpulse = m_impulse.z + impulse.z;
|
||||
if (newImpulse > 0.0f)
|
||||
{
|
||||
b2Vec2 reduced = m_mass.Solve22(-Cdot1);
|
||||
impulse.x = reduced.x;
|
||||
impulse.y = reduced.y;
|
||||
impulse.z = -m_impulse.z;
|
||||
m_impulse.x += reduced.x;
|
||||
m_impulse.y += reduced.y;
|
||||
m_impulse.z = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
b2Vec2 P(impulse.x, impulse.y);
|
||||
|
||||
v1 -= m1 * P;
|
||||
w1 -= i1 * (b2Cross(r1, P) + impulse.z);
|
||||
|
||||
v2 += m2 * P;
|
||||
w2 += i2 * (b2Cross(r2, P) + impulse.z);
|
||||
}
|
||||
else
|
||||
{
|
||||
b2Vec2 r1 = b2Mul(b1->GetTransform().R, m_localAnchor1 - b1->GetLocalCenter());
|
||||
b2Vec2 r2 = b2Mul(b2->GetTransform().R, m_localAnchor2 - b2->GetLocalCenter());
|
||||
|
||||
// Solve point-to-point constraint
|
||||
b2Vec2 Cdot = v2 + b2Cross(w2, r2) - v1 - b2Cross(w1, r1);
|
||||
b2Vec2 impulse = m_mass.Solve22(-Cdot);
|
||||
|
||||
m_impulse.x += impulse.x;
|
||||
m_impulse.y += impulse.y;
|
||||
|
||||
v1 -= m1 * impulse;
|
||||
w1 -= i1 * b2Cross(r1, impulse);
|
||||
|
||||
v2 += m2 * impulse;
|
||||
w2 += i2 * b2Cross(r2, impulse);
|
||||
}
|
||||
|
||||
b1->m_linearVelocity = v1;
|
||||
b1->m_angularVelocity = w1;
|
||||
b2->m_linearVelocity = v2;
|
||||
b2->m_angularVelocity = w2;
|
||||
}
|
||||
|
||||
bool b2RevoluteJoint::SolvePositionConstraints(float32 baumgarte)
|
||||
{
|
||||
// TODO_ERIN block solve with limit.
|
||||
|
||||
B2_NOT_USED(baumgarte);
|
||||
|
||||
b2Body* b1 = m_bodyA;
|
||||
b2Body* b2 = m_bodyB;
|
||||
|
||||
float32 angularError = 0.0f;
|
||||
float32 positionError = 0.0f;
|
||||
|
||||
// Solve angular limit constraint.
|
||||
if (m_enableLimit && m_limitState != e_inactiveLimit)
|
||||
{
|
||||
float32 angle = b2->m_sweep.a - b1->m_sweep.a - m_referenceAngle;
|
||||
float32 limitImpulse = 0.0f;
|
||||
|
||||
if (m_limitState == e_equalLimits)
|
||||
{
|
||||
// Prevent large angular corrections
|
||||
float32 C = b2Clamp(angle - m_lowerAngle, -b2_maxAngularCorrection, b2_maxAngularCorrection);
|
||||
limitImpulse = -m_motorMass * C;
|
||||
angularError = b2Abs(C);
|
||||
}
|
||||
else if (m_limitState == e_atLowerLimit)
|
||||
{
|
||||
float32 C = angle - m_lowerAngle;
|
||||
angularError = -C;
|
||||
|
||||
// Prevent large angular corrections and allow some slop.
|
||||
C = b2Clamp(C + b2_angularSlop, -b2_maxAngularCorrection, 0.0f);
|
||||
limitImpulse = -m_motorMass * C;
|
||||
}
|
||||
else if (m_limitState == e_atUpperLimit)
|
||||
{
|
||||
float32 C = angle - m_upperAngle;
|
||||
angularError = C;
|
||||
|
||||
// Prevent large angular corrections and allow some slop.
|
||||
C = b2Clamp(C - b2_angularSlop, 0.0f, b2_maxAngularCorrection);
|
||||
limitImpulse = -m_motorMass * C;
|
||||
}
|
||||
|
||||
b1->m_sweep.a -= b1->m_invI * limitImpulse;
|
||||
b2->m_sweep.a += b2->m_invI * limitImpulse;
|
||||
|
||||
b1->SynchronizeTransform();
|
||||
b2->SynchronizeTransform();
|
||||
}
|
||||
|
||||
// Solve point-to-point constraint.
|
||||
{
|
||||
b2Vec2 r1 = b2Mul(b1->GetTransform().R, m_localAnchor1 - b1->GetLocalCenter());
|
||||
b2Vec2 r2 = b2Mul(b2->GetTransform().R, m_localAnchor2 - b2->GetLocalCenter());
|
||||
|
||||
b2Vec2 C = b2->m_sweep.c + r2 - b1->m_sweep.c - r1;
|
||||
positionError = C.Length();
|
||||
|
||||
float32 invMass1 = b1->m_invMass, invMass2 = b2->m_invMass;
|
||||
float32 invI1 = b1->m_invI, invI2 = b2->m_invI;
|
||||
|
||||
// Handle large detachment.
|
||||
const float32 k_allowedStretch = 10.0f * b2_linearSlop;
|
||||
if (C.LengthSquared() > k_allowedStretch * k_allowedStretch)
|
||||
{
|
||||
// Use a particle solution (no rotation).
|
||||
b2Vec2 u = C; u.Normalize();
|
||||
float32 m = invMass1 + invMass2;
|
||||
if (m > 0.0f)
|
||||
{
|
||||
m = 1.0f / m;
|
||||
}
|
||||
b2Vec2 impulse = m * (-C);
|
||||
const float32 k_beta = 0.5f;
|
||||
b1->m_sweep.c -= k_beta * invMass1 * impulse;
|
||||
b2->m_sweep.c += k_beta * invMass2 * impulse;
|
||||
|
||||
C = b2->m_sweep.c + r2 - b1->m_sweep.c - r1;
|
||||
}
|
||||
|
||||
b2Mat22 K1;
|
||||
K1.col1.x = invMass1 + invMass2; K1.col2.x = 0.0f;
|
||||
K1.col1.y = 0.0f; K1.col2.y = invMass1 + invMass2;
|
||||
|
||||
b2Mat22 K2;
|
||||
K2.col1.x = invI1 * r1.y * r1.y; K2.col2.x = -invI1 * r1.x * r1.y;
|
||||
K2.col1.y = -invI1 * r1.x * r1.y; K2.col2.y = invI1 * r1.x * r1.x;
|
||||
|
||||
b2Mat22 K3;
|
||||
K3.col1.x = invI2 * r2.y * r2.y; K3.col2.x = -invI2 * r2.x * r2.y;
|
||||
K3.col1.y = -invI2 * r2.x * r2.y; K3.col2.y = invI2 * r2.x * r2.x;
|
||||
|
||||
b2Mat22 K = K1 + K2 + K3;
|
||||
b2Vec2 impulse = K.Solve(-C);
|
||||
|
||||
b1->m_sweep.c -= b1->m_invMass * impulse;
|
||||
b1->m_sweep.a -= b1->m_invI * b2Cross(r1, impulse);
|
||||
|
||||
b2->m_sweep.c += b2->m_invMass * impulse;
|
||||
b2->m_sweep.a += b2->m_invI * b2Cross(r2, impulse);
|
||||
|
||||
b1->SynchronizeTransform();
|
||||
b2->SynchronizeTransform();
|
||||
}
|
||||
|
||||
return positionError <= b2_linearSlop && angularError <= b2_angularSlop;
|
||||
}
|
||||
|
||||
b2Vec2 b2RevoluteJoint::GetAnchorA() const
|
||||
{
|
||||
return m_bodyA->GetWorldPoint(m_localAnchor1);
|
||||
}
|
||||
|
||||
b2Vec2 b2RevoluteJoint::GetAnchorB() const
|
||||
{
|
||||
return m_bodyB->GetWorldPoint(m_localAnchor2);
|
||||
}
|
||||
|
||||
b2Vec2 b2RevoluteJoint::GetReactionForce(float32 inv_dt) const
|
||||
{
|
||||
b2Vec2 P(m_impulse.x, m_impulse.y);
|
||||
return inv_dt * P;
|
||||
}
|
||||
|
||||
float32 b2RevoluteJoint::GetReactionTorque(float32 inv_dt) const
|
||||
{
|
||||
return inv_dt * m_impulse.z;
|
||||
}
|
||||
|
||||
float32 b2RevoluteJoint::GetJointAngle() const
|
||||
{
|
||||
b2Body* b1 = m_bodyA;
|
||||
b2Body* b2 = m_bodyB;
|
||||
return b2->m_sweep.a - b1->m_sweep.a - m_referenceAngle;
|
||||
}
|
||||
|
||||
float32 b2RevoluteJoint::GetJointSpeed() const
|
||||
{
|
||||
b2Body* b1 = m_bodyA;
|
||||
b2Body* b2 = m_bodyB;
|
||||
return b2->m_angularVelocity - b1->m_angularVelocity;
|
||||
}
|
||||
|
||||
bool b2RevoluteJoint::IsMotorEnabled() const
|
||||
{
|
||||
return m_enableMotor;
|
||||
}
|
||||
|
||||
void b2RevoluteJoint::EnableMotor(bool flag)
|
||||
{
|
||||
m_bodyA->SetAwake(true);
|
||||
m_bodyB->SetAwake(true);
|
||||
m_enableMotor = flag;
|
||||
}
|
||||
|
||||
float32 b2RevoluteJoint::GetMotorTorque() const
|
||||
{
|
||||
return m_motorImpulse;
|
||||
}
|
||||
|
||||
void b2RevoluteJoint::SetMotorSpeed(float32 speed)
|
||||
{
|
||||
m_bodyA->SetAwake(true);
|
||||
m_bodyB->SetAwake(true);
|
||||
m_motorSpeed = speed;
|
||||
}
|
||||
|
||||
void b2RevoluteJoint::SetMaxMotorTorque(float32 torque)
|
||||
{
|
||||
m_bodyA->SetAwake(true);
|
||||
m_bodyB->SetAwake(true);
|
||||
m_maxMotorTorque = torque;
|
||||
}
|
||||
|
||||
bool b2RevoluteJoint::IsLimitEnabled() const
|
||||
{
|
||||
return m_enableLimit;
|
||||
}
|
||||
|
||||
void b2RevoluteJoint::EnableLimit(bool flag)
|
||||
{
|
||||
m_bodyA->SetAwake(true);
|
||||
m_bodyB->SetAwake(true);
|
||||
m_enableLimit = flag;
|
||||
}
|
||||
|
||||
float32 b2RevoluteJoint::GetLowerLimit() const
|
||||
{
|
||||
return m_lowerAngle;
|
||||
}
|
||||
|
||||
float32 b2RevoluteJoint::GetUpperLimit() const
|
||||
{
|
||||
return m_upperAngle;
|
||||
}
|
||||
|
||||
void b2RevoluteJoint::SetLimits(float32 lower, float32 upper)
|
||||
{
|
||||
b2Assert(lower <= upper);
|
||||
m_bodyA->SetAwake(true);
|
||||
m_bodyB->SetAwake(true);
|
||||
m_lowerAngle = lower;
|
||||
m_upperAngle = upper;
|
||||
}
|
||||
174
AndEngine/jni/Box2D/Dynamics/Joints/b2RevoluteJoint.h
Normal file
174
AndEngine/jni/Box2D/Dynamics/Joints/b2RevoluteJoint.h
Normal file
@@ -0,0 +1,174 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef B2_REVOLUTE_JOINT_H
|
||||
#define B2_REVOLUTE_JOINT_H
|
||||
|
||||
#include "Box2D/Dynamics/Joints/b2Joint.h"
|
||||
|
||||
/// Revolute joint definition. This requires defining an
|
||||
/// anchor point where the bodies are joined. The definition
|
||||
/// uses local anchor points so that the initial configuration
|
||||
/// can violate the constraint slightly. You also need to
|
||||
/// specify the initial relative angle for joint limits. This
|
||||
/// helps when saving and loading a game.
|
||||
/// The local anchor points are measured from the body's origin
|
||||
/// rather than the center of mass because:
|
||||
/// 1. you might not know where the center of mass will be.
|
||||
/// 2. if you add/remove shapes from a body and recompute the mass,
|
||||
/// the joints will be broken.
|
||||
struct b2RevoluteJointDef : public b2JointDef
|
||||
{
|
||||
b2RevoluteJointDef()
|
||||
{
|
||||
type = e_revoluteJoint;
|
||||
localAnchorA.Set(0.0f, 0.0f);
|
||||
localAnchorB.Set(0.0f, 0.0f);
|
||||
referenceAngle = 0.0f;
|
||||
lowerAngle = 0.0f;
|
||||
upperAngle = 0.0f;
|
||||
maxMotorTorque = 0.0f;
|
||||
motorSpeed = 0.0f;
|
||||
enableLimit = false;
|
||||
enableMotor = false;
|
||||
}
|
||||
|
||||
/// Initialize the bodies, anchors, and reference angle using a world
|
||||
/// anchor point.
|
||||
void Initialize(b2Body* bodyA, b2Body* bodyB, const b2Vec2& anchor);
|
||||
|
||||
/// The local anchor point relative to body1's origin.
|
||||
b2Vec2 localAnchorA;
|
||||
|
||||
/// The local anchor point relative to body2's origin.
|
||||
b2Vec2 localAnchorB;
|
||||
|
||||
/// The body2 angle minus body1 angle in the reference state (radians).
|
||||
float32 referenceAngle;
|
||||
|
||||
/// A flag to enable joint limits.
|
||||
bool enableLimit;
|
||||
|
||||
/// The lower angle for the joint limit (radians).
|
||||
float32 lowerAngle;
|
||||
|
||||
/// The upper angle for the joint limit (radians).
|
||||
float32 upperAngle;
|
||||
|
||||
/// A flag to enable the joint motor.
|
||||
bool enableMotor;
|
||||
|
||||
/// The desired motor speed. Usually in radians per second.
|
||||
float32 motorSpeed;
|
||||
|
||||
/// The maximum motor torque used to achieve the desired motor speed.
|
||||
/// Usually in N-m.
|
||||
float32 maxMotorTorque;
|
||||
};
|
||||
|
||||
/// A revolute joint constrains two bodies to share a common point while they
|
||||
/// are free to rotate about the point. The relative rotation about the shared
|
||||
/// point is the joint angle. You can limit the relative rotation with
|
||||
/// a joint limit that specifies a lower and upper angle. You can use a motor
|
||||
/// to drive the relative rotation about the shared point. A maximum motor torque
|
||||
/// is provided so that infinite forces are not generated.
|
||||
class b2RevoluteJoint : public b2Joint
|
||||
{
|
||||
public:
|
||||
b2Vec2 GetAnchorA() const;
|
||||
b2Vec2 GetAnchorB() const;
|
||||
|
||||
b2Vec2 GetReactionForce(float32 inv_dt) const;
|
||||
float32 GetReactionTorque(float32 inv_dt) const;
|
||||
|
||||
/// Get the current joint angle in radians.
|
||||
float32 GetJointAngle() const;
|
||||
|
||||
/// Get the current joint angle speed in radians per second.
|
||||
float32 GetJointSpeed() const;
|
||||
|
||||
/// Is the joint limit enabled?
|
||||
bool IsLimitEnabled() const;
|
||||
|
||||
/// Enable/disable the joint limit.
|
||||
void EnableLimit(bool flag);
|
||||
|
||||
/// Get the lower joint limit in radians.
|
||||
float32 GetLowerLimit() const;
|
||||
|
||||
/// Get the upper joint limit in radians.
|
||||
float32 GetUpperLimit() const;
|
||||
|
||||
/// Set the joint limits in radians.
|
||||
void SetLimits(float32 lower, float32 upper);
|
||||
|
||||
/// Is the joint motor enabled?
|
||||
bool IsMotorEnabled() const;
|
||||
|
||||
/// Enable/disable the joint motor.
|
||||
void EnableMotor(bool flag);
|
||||
|
||||
/// Set the motor speed in radians per second.
|
||||
void SetMotorSpeed(float32 speed);
|
||||
|
||||
/// Get the motor speed in radians per second.
|
||||
float32 GetMotorSpeed() const;
|
||||
|
||||
/// Set the maximum motor torque, usually in N-m.
|
||||
void SetMaxMotorTorque(float32 torque);
|
||||
|
||||
/// Get the current motor torque, usually in N-m.
|
||||
float32 GetMotorTorque() const;
|
||||
|
||||
protected:
|
||||
|
||||
friend class b2Joint;
|
||||
friend class b2GearJoint;
|
||||
|
||||
b2RevoluteJoint(const b2RevoluteJointDef* def);
|
||||
|
||||
void InitVelocityConstraints(const b2TimeStep& step);
|
||||
void SolveVelocityConstraints(const b2TimeStep& step);
|
||||
|
||||
bool SolvePositionConstraints(float32 baumgarte);
|
||||
|
||||
b2Vec2 m_localAnchor1; // relative
|
||||
b2Vec2 m_localAnchor2;
|
||||
b2Vec3 m_impulse;
|
||||
float32 m_motorImpulse;
|
||||
|
||||
b2Mat33 m_mass; // effective mass for point-to-point constraint.
|
||||
float32 m_motorMass; // effective mass for motor/limit angular constraint.
|
||||
|
||||
bool m_enableMotor;
|
||||
float32 m_maxMotorTorque;
|
||||
float32 m_motorSpeed;
|
||||
|
||||
bool m_enableLimit;
|
||||
float32 m_referenceAngle;
|
||||
float32 m_lowerAngle;
|
||||
float32 m_upperAngle;
|
||||
b2LimitState m_limitState;
|
||||
};
|
||||
|
||||
inline float32 b2RevoluteJoint::GetMotorSpeed() const
|
||||
{
|
||||
return m_motorSpeed;
|
||||
}
|
||||
|
||||
#endif
|
||||
219
AndEngine/jni/Box2D/Dynamics/Joints/b2WeldJoint.cpp
Normal file
219
AndEngine/jni/Box2D/Dynamics/Joints/b2WeldJoint.cpp
Normal file
@@ -0,0 +1,219 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#include "Box2D/Dynamics/Joints/b2WeldJoint.h"
|
||||
#include "Box2D/Dynamics/b2Body.h"
|
||||
#include "Box2D/Dynamics/b2TimeStep.h"
|
||||
|
||||
// Point-to-point constraint
|
||||
// C = p2 - p1
|
||||
// Cdot = v2 - v1
|
||||
// = v2 + cross(w2, r2) - v1 - cross(w1, r1)
|
||||
// J = [-I -r1_skew I r2_skew ]
|
||||
// Identity used:
|
||||
// w k % (rx i + ry j) = w * (-ry i + rx j)
|
||||
|
||||
// Angle constraint
|
||||
// C = angle2 - angle1 - referenceAngle
|
||||
// Cdot = w2 - w1
|
||||
// J = [0 0 -1 0 0 1]
|
||||
// K = invI1 + invI2
|
||||
|
||||
void b2WeldJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor)
|
||||
{
|
||||
bodyA = bA;
|
||||
bodyB = bB;
|
||||
localAnchorA = bodyA->GetLocalPoint(anchor);
|
||||
localAnchorB = bodyB->GetLocalPoint(anchor);
|
||||
referenceAngle = bodyB->GetAngle() - bodyA->GetAngle();
|
||||
}
|
||||
|
||||
b2WeldJoint::b2WeldJoint(const b2WeldJointDef* def)
|
||||
: b2Joint(def)
|
||||
{
|
||||
m_localAnchorA = def->localAnchorA;
|
||||
m_localAnchorB = def->localAnchorB;
|
||||
m_referenceAngle = def->referenceAngle;
|
||||
|
||||
m_impulse.SetZero();
|
||||
}
|
||||
|
||||
void b2WeldJoint::InitVelocityConstraints(const b2TimeStep& step)
|
||||
{
|
||||
b2Body* bA = m_bodyA;
|
||||
b2Body* bB = m_bodyB;
|
||||
|
||||
// Compute the effective mass matrix.
|
||||
b2Vec2 rA = b2Mul(bA->GetTransform().R, m_localAnchorA - bA->GetLocalCenter());
|
||||
b2Vec2 rB = b2Mul(bB->GetTransform().R, m_localAnchorB - bB->GetLocalCenter());
|
||||
|
||||
// J = [-I -r1_skew I r2_skew]
|
||||
// [ 0 -1 0 1]
|
||||
// r_skew = [-ry; rx]
|
||||
|
||||
// Matlab
|
||||
// K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB]
|
||||
// [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB]
|
||||
// [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB]
|
||||
|
||||
float32 mA = bA->m_invMass, mB = bB->m_invMass;
|
||||
float32 iA = bA->m_invI, iB = bB->m_invI;
|
||||
|
||||
m_mass.col1.x = mA + mB + rA.y * rA.y * iA + rB.y * rB.y * iB;
|
||||
m_mass.col2.x = -rA.y * rA.x * iA - rB.y * rB.x * iB;
|
||||
m_mass.col3.x = -rA.y * iA - rB.y * iB;
|
||||
m_mass.col1.y = m_mass.col2.x;
|
||||
m_mass.col2.y = mA + mB + rA.x * rA.x * iA + rB.x * rB.x * iB;
|
||||
m_mass.col3.y = rA.x * iA + rB.x * iB;
|
||||
m_mass.col1.z = m_mass.col3.x;
|
||||
m_mass.col2.z = m_mass.col3.y;
|
||||
m_mass.col3.z = iA + iB;
|
||||
|
||||
if (step.warmStarting)
|
||||
{
|
||||
// Scale impulses to support a variable time step.
|
||||
m_impulse *= step.dtRatio;
|
||||
|
||||
b2Vec2 P(m_impulse.x, m_impulse.y);
|
||||
|
||||
bA->m_linearVelocity -= mA * P;
|
||||
bA->m_angularVelocity -= iA * (b2Cross(rA, P) + m_impulse.z);
|
||||
|
||||
bB->m_linearVelocity += mB * P;
|
||||
bB->m_angularVelocity += iB * (b2Cross(rB, P) + m_impulse.z);
|
||||
}
|
||||
else
|
||||
{
|
||||
m_impulse.SetZero();
|
||||
}
|
||||
}
|
||||
|
||||
void b2WeldJoint::SolveVelocityConstraints(const b2TimeStep& step)
|
||||
{
|
||||
B2_NOT_USED(step);
|
||||
|
||||
b2Body* bA = m_bodyA;
|
||||
b2Body* bB = m_bodyB;
|
||||
|
||||
b2Vec2 vA = bA->m_linearVelocity;
|
||||
float32 wA = bA->m_angularVelocity;
|
||||
b2Vec2 vB = bB->m_linearVelocity;
|
||||
float32 wB = bB->m_angularVelocity;
|
||||
|
||||
float32 mA = bA->m_invMass, mB = bB->m_invMass;
|
||||
float32 iA = bA->m_invI, iB = bB->m_invI;
|
||||
|
||||
b2Vec2 rA = b2Mul(bA->GetTransform().R, m_localAnchorA - bA->GetLocalCenter());
|
||||
b2Vec2 rB = b2Mul(bB->GetTransform().R, m_localAnchorB - bB->GetLocalCenter());
|
||||
|
||||
// Solve point-to-point constraint
|
||||
b2Vec2 Cdot1 = vB + b2Cross(wB, rB) - vA - b2Cross(wA, rA);
|
||||
float32 Cdot2 = wB - wA;
|
||||
b2Vec3 Cdot(Cdot1.x, Cdot1.y, Cdot2);
|
||||
|
||||
b2Vec3 impulse = m_mass.Solve33(-Cdot);
|
||||
m_impulse += impulse;
|
||||
|
||||
b2Vec2 P(impulse.x, impulse.y);
|
||||
|
||||
vA -= mA * P;
|
||||
wA -= iA * (b2Cross(rA, P) + impulse.z);
|
||||
|
||||
vB += mB * P;
|
||||
wB += iB * (b2Cross(rB, P) + impulse.z);
|
||||
|
||||
bA->m_linearVelocity = vA;
|
||||
bA->m_angularVelocity = wA;
|
||||
bB->m_linearVelocity = vB;
|
||||
bB->m_angularVelocity = wB;
|
||||
}
|
||||
|
||||
bool b2WeldJoint::SolvePositionConstraints(float32 baumgarte)
|
||||
{
|
||||
B2_NOT_USED(baumgarte);
|
||||
|
||||
b2Body* bA = m_bodyA;
|
||||
b2Body* bB = m_bodyB;
|
||||
|
||||
float32 mA = bA->m_invMass, mB = bB->m_invMass;
|
||||
float32 iA = bA->m_invI, iB = bB->m_invI;
|
||||
|
||||
b2Vec2 rA = b2Mul(bA->GetTransform().R, m_localAnchorA - bA->GetLocalCenter());
|
||||
b2Vec2 rB = b2Mul(bB->GetTransform().R, m_localAnchorB - bB->GetLocalCenter());
|
||||
|
||||
b2Vec2 C1 = bB->m_sweep.c + rB - bA->m_sweep.c - rA;
|
||||
float32 C2 = bB->m_sweep.a - bA->m_sweep.a - m_referenceAngle;
|
||||
|
||||
// Handle large detachment.
|
||||
const float32 k_allowedStretch = 10.0f * b2_linearSlop;
|
||||
float32 positionError = C1.Length();
|
||||
float32 angularError = b2Abs(C2);
|
||||
if (positionError > k_allowedStretch)
|
||||
{
|
||||
iA *= 1.0f;
|
||||
iB *= 1.0f;
|
||||
}
|
||||
|
||||
m_mass.col1.x = mA + mB + rA.y * rA.y * iA + rB.y * rB.y * iB;
|
||||
m_mass.col2.x = -rA.y * rA.x * iA - rB.y * rB.x * iB;
|
||||
m_mass.col3.x = -rA.y * iA - rB.y * iB;
|
||||
m_mass.col1.y = m_mass.col2.x;
|
||||
m_mass.col2.y = mA + mB + rA.x * rA.x * iA + rB.x * rB.x * iB;
|
||||
m_mass.col3.y = rA.x * iA + rB.x * iB;
|
||||
m_mass.col1.z = m_mass.col3.x;
|
||||
m_mass.col2.z = m_mass.col3.y;
|
||||
m_mass.col3.z = iA + iB;
|
||||
|
||||
b2Vec3 C(C1.x, C1.y, C2);
|
||||
|
||||
b2Vec3 impulse = m_mass.Solve33(-C);
|
||||
|
||||
b2Vec2 P(impulse.x, impulse.y);
|
||||
|
||||
bA->m_sweep.c -= mA * P;
|
||||
bA->m_sweep.a -= iA * (b2Cross(rA, P) + impulse.z);
|
||||
|
||||
bB->m_sweep.c += mB * P;
|
||||
bB->m_sweep.a += iB * (b2Cross(rB, P) + impulse.z);
|
||||
|
||||
bA->SynchronizeTransform();
|
||||
bB->SynchronizeTransform();
|
||||
|
||||
return positionError <= b2_linearSlop && angularError <= b2_angularSlop;
|
||||
}
|
||||
|
||||
b2Vec2 b2WeldJoint::GetAnchorA() const
|
||||
{
|
||||
return m_bodyA->GetWorldPoint(m_localAnchorA);
|
||||
}
|
||||
|
||||
b2Vec2 b2WeldJoint::GetAnchorB() const
|
||||
{
|
||||
return m_bodyB->GetWorldPoint(m_localAnchorB);
|
||||
}
|
||||
|
||||
b2Vec2 b2WeldJoint::GetReactionForce(float32 inv_dt) const
|
||||
{
|
||||
b2Vec2 P(m_impulse.x, m_impulse.y);
|
||||
return inv_dt * P;
|
||||
}
|
||||
|
||||
float32 b2WeldJoint::GetReactionTorque(float32 inv_dt) const
|
||||
{
|
||||
return inv_dt * m_impulse.z;
|
||||
}
|
||||
82
AndEngine/jni/Box2D/Dynamics/Joints/b2WeldJoint.h
Normal file
82
AndEngine/jni/Box2D/Dynamics/Joints/b2WeldJoint.h
Normal file
@@ -0,0 +1,82 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef B2_WELD_JOINT_H
|
||||
#define B2_WELD_JOINT_H
|
||||
|
||||
#include "Box2D/Dynamics/Joints/b2Joint.h"
|
||||
|
||||
/// Weld joint definition. You need to specify local anchor points
|
||||
/// where they are attached and the relative body angle. The position
|
||||
/// of the anchor points is important for computing the reaction torque.
|
||||
struct b2WeldJointDef : public b2JointDef
|
||||
{
|
||||
b2WeldJointDef()
|
||||
{
|
||||
type = e_weldJoint;
|
||||
localAnchorA.Set(0.0f, 0.0f);
|
||||
localAnchorB.Set(0.0f, 0.0f);
|
||||
referenceAngle = 0.0f;
|
||||
}
|
||||
|
||||
/// Initialize the bodies, anchors, and reference angle using a world
|
||||
/// anchor point.
|
||||
void Initialize(b2Body* body1, b2Body* body2, const b2Vec2& anchor);
|
||||
|
||||
/// The local anchor point relative to body1's origin.
|
||||
b2Vec2 localAnchorA;
|
||||
|
||||
/// The local anchor point relative to body2's origin.
|
||||
b2Vec2 localAnchorB;
|
||||
|
||||
/// The body2 angle minus body1 angle in the reference state (radians).
|
||||
float32 referenceAngle;
|
||||
};
|
||||
|
||||
/// A weld joint essentially glues two bodies together. A weld joint may
|
||||
/// distort somewhat because the island constraint solver is approximate.
|
||||
class b2WeldJoint : public b2Joint
|
||||
{
|
||||
public:
|
||||
b2Vec2 GetAnchorA() const;
|
||||
b2Vec2 GetAnchorB() const;
|
||||
|
||||
b2Vec2 GetReactionForce(float32 inv_dt) const;
|
||||
float32 GetReactionTorque(float32 inv_dt) const;
|
||||
|
||||
protected:
|
||||
|
||||
friend class b2Joint;
|
||||
|
||||
b2WeldJoint(const b2WeldJointDef* def);
|
||||
|
||||
void InitVelocityConstraints(const b2TimeStep& step);
|
||||
void SolveVelocityConstraints(const b2TimeStep& step);
|
||||
|
||||
bool SolvePositionConstraints(float32 baumgarte);
|
||||
|
||||
b2Vec2 m_localAnchorA;
|
||||
b2Vec2 m_localAnchorB;
|
||||
float32 m_referenceAngle;
|
||||
|
||||
b2Vec3 m_impulse;
|
||||
|
||||
b2Mat33 m_mass;
|
||||
};
|
||||
|
||||
#endif
|
||||
470
AndEngine/jni/Box2D/Dynamics/b2Body.cpp
Normal file
470
AndEngine/jni/Box2D/Dynamics/b2Body.cpp
Normal file
@@ -0,0 +1,470 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#include "Box2D/Dynamics/b2Body.h"
|
||||
#include "Box2D/Dynamics/b2Fixture.h"
|
||||
#include "Box2D/Dynamics/b2World.h"
|
||||
#include "Box2D/Dynamics/Contacts/b2Contact.h"
|
||||
#include "Box2D/Dynamics/Joints/b2Joint.h"
|
||||
|
||||
b2Body::b2Body(const b2BodyDef* bd, b2World* world)
|
||||
{
|
||||
b2Assert(bd->position.IsValid());
|
||||
b2Assert(bd->linearVelocity.IsValid());
|
||||
b2Assert(b2IsValid(bd->angle));
|
||||
b2Assert(b2IsValid(bd->angularVelocity));
|
||||
b2Assert(b2IsValid(bd->inertiaScale) && bd->inertiaScale >= 0.0f);
|
||||
b2Assert(b2IsValid(bd->angularDamping) && bd->angularDamping >= 0.0f);
|
||||
b2Assert(b2IsValid(bd->linearDamping) && bd->linearDamping >= 0.0f);
|
||||
|
||||
m_flags = 0;
|
||||
|
||||
if (bd->bullet)
|
||||
{
|
||||
m_flags |= e_bulletFlag;
|
||||
}
|
||||
if (bd->fixedRotation)
|
||||
{
|
||||
m_flags |= e_fixedRotationFlag;
|
||||
}
|
||||
if (bd->allowSleep)
|
||||
{
|
||||
m_flags |= e_autoSleepFlag;
|
||||
}
|
||||
if (bd->awake)
|
||||
{
|
||||
m_flags |= e_awakeFlag;
|
||||
}
|
||||
if (bd->active)
|
||||
{
|
||||
m_flags |= e_activeFlag;
|
||||
}
|
||||
|
||||
m_world = world;
|
||||
|
||||
m_xf.position = bd->position;
|
||||
m_xf.R.Set(bd->angle);
|
||||
|
||||
m_sweep.localCenter.SetZero();
|
||||
m_sweep.a0 = m_sweep.a = bd->angle;
|
||||
m_sweep.c0 = m_sweep.c = b2Mul(m_xf, m_sweep.localCenter);
|
||||
|
||||
m_jointList = NULL;
|
||||
m_contactList = NULL;
|
||||
m_prev = NULL;
|
||||
m_next = NULL;
|
||||
|
||||
m_linearVelocity = bd->linearVelocity;
|
||||
m_angularVelocity = bd->angularVelocity;
|
||||
|
||||
m_linearDamping = bd->linearDamping;
|
||||
m_angularDamping = bd->angularDamping;
|
||||
|
||||
m_force.SetZero();
|
||||
m_torque = 0.0f;
|
||||
|
||||
m_sleepTime = 0.0f;
|
||||
|
||||
m_type = bd->type;
|
||||
|
||||
if (m_type == b2_dynamicBody)
|
||||
{
|
||||
m_mass = 1.0f;
|
||||
m_invMass = 1.0f;
|
||||
}
|
||||
else
|
||||
{
|
||||
m_mass = 0.0f;
|
||||
m_invMass = 0.0f;
|
||||
}
|
||||
|
||||
m_I = 0.0f;
|
||||
m_invI = 0.0f;
|
||||
|
||||
m_userData = bd->userData;
|
||||
|
||||
m_fixtureList = NULL;
|
||||
m_fixtureCount = 0;
|
||||
}
|
||||
|
||||
b2Body::~b2Body()
|
||||
{
|
||||
// shapes and joints are destroyed in b2World::Destroy
|
||||
}
|
||||
|
||||
void b2Body::SetType(b2BodyType type)
|
||||
{
|
||||
if (m_type == type)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
m_type = type;
|
||||
|
||||
ResetMassData();
|
||||
|
||||
if (m_type == b2_staticBody)
|
||||
{
|
||||
m_linearVelocity.SetZero();
|
||||
m_angularVelocity = 0.0f;
|
||||
}
|
||||
|
||||
SetAwake(true);
|
||||
|
||||
m_force.SetZero();
|
||||
m_torque = 0.0f;
|
||||
|
||||
// Since the body type changed, we need to flag contacts for filtering.
|
||||
for (b2ContactEdge* ce = m_contactList; ce; ce = ce->next)
|
||||
{
|
||||
ce->contact->FlagForFiltering();
|
||||
}
|
||||
}
|
||||
|
||||
b2Fixture* b2Body::CreateFixture(const b2FixtureDef* def)
|
||||
{
|
||||
b2Assert(m_world->IsLocked() == false);
|
||||
if (m_world->IsLocked() == true)
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
|
||||
b2BlockAllocator* allocator = &m_world->m_blockAllocator;
|
||||
|
||||
void* memory = allocator->Allocate(sizeof(b2Fixture));
|
||||
b2Fixture* fixture = new (memory) b2Fixture;
|
||||
fixture->Create(allocator, this, def);
|
||||
|
||||
if (m_flags & e_activeFlag)
|
||||
{
|
||||
b2BroadPhase* broadPhase = &m_world->m_contactManager.m_broadPhase;
|
||||
fixture->CreateProxy(broadPhase, m_xf);
|
||||
}
|
||||
|
||||
fixture->m_next = m_fixtureList;
|
||||
m_fixtureList = fixture;
|
||||
++m_fixtureCount;
|
||||
|
||||
fixture->m_body = this;
|
||||
|
||||
// Adjust mass properties if needed.
|
||||
if (fixture->m_density > 0.0f)
|
||||
{
|
||||
ResetMassData();
|
||||
}
|
||||
|
||||
// Let the world know we have a new fixture. This will cause new contacts
|
||||
// to be created at the beginning of the next time step.
|
||||
m_world->m_flags |= b2World::e_newFixture;
|
||||
|
||||
return fixture;
|
||||
}
|
||||
|
||||
b2Fixture* b2Body::CreateFixture(const b2Shape* shape, float32 density)
|
||||
{
|
||||
b2FixtureDef def;
|
||||
def.shape = shape;
|
||||
def.density = density;
|
||||
|
||||
return CreateFixture(&def);
|
||||
}
|
||||
|
||||
void b2Body::DestroyFixture(b2Fixture* fixture)
|
||||
{
|
||||
b2Assert(m_world->IsLocked() == false);
|
||||
if (m_world->IsLocked() == true)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
b2Assert(fixture->m_body == this);
|
||||
|
||||
// Remove the fixture from this body's singly linked list.
|
||||
b2Assert(m_fixtureCount > 0);
|
||||
b2Fixture** node = &m_fixtureList;
|
||||
bool found = false;
|
||||
while (*node != NULL)
|
||||
{
|
||||
if (*node == fixture)
|
||||
{
|
||||
*node = fixture->m_next;
|
||||
found = true;
|
||||
break;
|
||||
}
|
||||
|
||||
node = &(*node)->m_next;
|
||||
}
|
||||
|
||||
// You tried to remove a shape that is not attached to this body.
|
||||
b2Assert(found);
|
||||
|
||||
// Destroy any contacts associated with the fixture.
|
||||
b2ContactEdge* edge = m_contactList;
|
||||
while (edge)
|
||||
{
|
||||
b2Contact* c = edge->contact;
|
||||
edge = edge->next;
|
||||
|
||||
b2Fixture* fixtureA = c->GetFixtureA();
|
||||
b2Fixture* fixtureB = c->GetFixtureB();
|
||||
|
||||
if (fixture == fixtureA || fixture == fixtureB)
|
||||
{
|
||||
// This destroys the contact and removes it from
|
||||
// this body's contact list.
|
||||
m_world->m_contactManager.Destroy(c);
|
||||
}
|
||||
}
|
||||
|
||||
b2BlockAllocator* allocator = &m_world->m_blockAllocator;
|
||||
|
||||
if (m_flags & e_activeFlag)
|
||||
{
|
||||
b2Assert(fixture->m_proxyId != b2BroadPhase::e_nullProxy);
|
||||
b2BroadPhase* broadPhase = &m_world->m_contactManager.m_broadPhase;
|
||||
fixture->DestroyProxy(broadPhase);
|
||||
}
|
||||
else
|
||||
{
|
||||
b2Assert(fixture->m_proxyId == b2BroadPhase::e_nullProxy);
|
||||
}
|
||||
|
||||
fixture->Destroy(allocator);
|
||||
fixture->m_body = NULL;
|
||||
fixture->m_next = NULL;
|
||||
fixture->~b2Fixture();
|
||||
allocator->Free(fixture, sizeof(b2Fixture));
|
||||
|
||||
--m_fixtureCount;
|
||||
|
||||
// Reset the mass data.
|
||||
ResetMassData();
|
||||
}
|
||||
|
||||
void b2Body::ResetMassData()
|
||||
{
|
||||
// Compute mass data from shapes. Each shape has its own density.
|
||||
m_mass = 0.0f;
|
||||
m_invMass = 0.0f;
|
||||
m_I = 0.0f;
|
||||
m_invI = 0.0f;
|
||||
m_sweep.localCenter.SetZero();
|
||||
|
||||
// Static and kinematic bodies have zero mass.
|
||||
if (m_type == b2_staticBody || m_type == b2_kinematicBody)
|
||||
{
|
||||
m_sweep.c0 = m_sweep.c = m_xf.position;
|
||||
return;
|
||||
}
|
||||
|
||||
b2Assert(m_type == b2_dynamicBody);
|
||||
|
||||
// Accumulate mass over all fixtures.
|
||||
b2Vec2 center = b2Vec2_zero;
|
||||
for (b2Fixture* f = m_fixtureList; f; f = f->m_next)
|
||||
{
|
||||
if (f->m_density == 0.0f)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
b2MassData massData;
|
||||
f->GetMassData(&massData);
|
||||
m_mass += massData.mass;
|
||||
center += massData.mass * massData.center;
|
||||
m_I += massData.I;
|
||||
}
|
||||
|
||||
// Compute center of mass.
|
||||
if (m_mass > 0.0f)
|
||||
{
|
||||
m_invMass = 1.0f / m_mass;
|
||||
center *= m_invMass;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Force all dynamic bodies to have a positive mass.
|
||||
m_mass = 1.0f;
|
||||
m_invMass = 1.0f;
|
||||
}
|
||||
|
||||
if (m_I > 0.0f && (m_flags & e_fixedRotationFlag) == 0)
|
||||
{
|
||||
// Center the inertia about the center of mass.
|
||||
m_I -= m_mass * b2Dot(center, center);
|
||||
b2Assert(m_I > 0.0f);
|
||||
m_invI = 1.0f / m_I;
|
||||
|
||||
}
|
||||
else
|
||||
{
|
||||
m_I = 0.0f;
|
||||
m_invI = 0.0f;
|
||||
}
|
||||
|
||||
// Move center of mass.
|
||||
b2Vec2 oldCenter = m_sweep.c;
|
||||
m_sweep.localCenter = center;
|
||||
m_sweep.c0 = m_sweep.c = b2Mul(m_xf, m_sweep.localCenter);
|
||||
|
||||
// Update center of mass velocity.
|
||||
m_linearVelocity += b2Cross(m_angularVelocity, m_sweep.c - oldCenter);
|
||||
}
|
||||
|
||||
void b2Body::SetMassData(const b2MassData* massData)
|
||||
{
|
||||
b2Assert(m_world->IsLocked() == false);
|
||||
if (m_world->IsLocked() == true)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
if (m_type != b2_dynamicBody)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
m_invMass = 0.0f;
|
||||
m_I = 0.0f;
|
||||
m_invI = 0.0f;
|
||||
|
||||
m_mass = massData->mass;
|
||||
if (m_mass <= 0.0f)
|
||||
{
|
||||
m_mass = 1.0f;
|
||||
}
|
||||
|
||||
m_invMass = 1.0f / m_mass;
|
||||
|
||||
if (massData->I > 0.0f && (m_flags & b2Body::e_fixedRotationFlag) == 0)
|
||||
{
|
||||
m_I = massData->I - m_mass * b2Dot(massData->center, massData->center);
|
||||
b2Assert(m_I > 0.0f);
|
||||
m_invI = 1.0f / m_I;
|
||||
}
|
||||
|
||||
// Move center of mass.
|
||||
b2Vec2 oldCenter = m_sweep.c;
|
||||
m_sweep.localCenter = massData->center;
|
||||
m_sweep.c0 = m_sweep.c = b2Mul(m_xf, m_sweep.localCenter);
|
||||
|
||||
// Update center of mass velocity.
|
||||
m_linearVelocity += b2Cross(m_angularVelocity, m_sweep.c - oldCenter);
|
||||
}
|
||||
|
||||
bool b2Body::ShouldCollide(const b2Body* other) const
|
||||
{
|
||||
// At least one body should be dynamic.
|
||||
if (m_type != b2_dynamicBody && other->m_type != b2_dynamicBody)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
// Does a joint prevent collision?
|
||||
for (b2JointEdge* jn = m_jointList; jn; jn = jn->next)
|
||||
{
|
||||
if (jn->other == other)
|
||||
{
|
||||
if (jn->joint->m_collideConnected == false)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void b2Body::SetTransform(const b2Vec2& position, float32 angle)
|
||||
{
|
||||
b2Assert(m_world->IsLocked() == false);
|
||||
if (m_world->IsLocked() == true)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
m_xf.R.Set(angle);
|
||||
m_xf.position = position;
|
||||
|
||||
m_sweep.c0 = m_sweep.c = b2Mul(m_xf, m_sweep.localCenter);
|
||||
m_sweep.a0 = m_sweep.a = angle;
|
||||
|
||||
b2BroadPhase* broadPhase = &m_world->m_contactManager.m_broadPhase;
|
||||
for (b2Fixture* f = m_fixtureList; f; f = f->m_next)
|
||||
{
|
||||
f->Synchronize(broadPhase, m_xf, m_xf);
|
||||
}
|
||||
|
||||
m_world->m_contactManager.FindNewContacts();
|
||||
}
|
||||
|
||||
void b2Body::SynchronizeFixtures()
|
||||
{
|
||||
b2Transform xf1;
|
||||
xf1.R.Set(m_sweep.a0);
|
||||
xf1.position = m_sweep.c0 - b2Mul(xf1.R, m_sweep.localCenter);
|
||||
|
||||
b2BroadPhase* broadPhase = &m_world->m_contactManager.m_broadPhase;
|
||||
for (b2Fixture* f = m_fixtureList; f; f = f->m_next)
|
||||
{
|
||||
f->Synchronize(broadPhase, xf1, m_xf);
|
||||
}
|
||||
}
|
||||
|
||||
void b2Body::SetActive(bool flag)
|
||||
{
|
||||
if (flag == IsActive())
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
if (flag)
|
||||
{
|
||||
m_flags |= e_activeFlag;
|
||||
|
||||
// Create all proxies.
|
||||
b2BroadPhase* broadPhase = &m_world->m_contactManager.m_broadPhase;
|
||||
for (b2Fixture* f = m_fixtureList; f; f = f->m_next)
|
||||
{
|
||||
f->CreateProxy(broadPhase, m_xf);
|
||||
}
|
||||
|
||||
// Contacts are created the next time step.
|
||||
}
|
||||
else
|
||||
{
|
||||
m_flags &= ~e_activeFlag;
|
||||
|
||||
// Destroy all proxies.
|
||||
b2BroadPhase* broadPhase = &m_world->m_contactManager.m_broadPhase;
|
||||
for (b2Fixture* f = m_fixtureList; f; f = f->m_next)
|
||||
{
|
||||
f->DestroyProxy(broadPhase);
|
||||
}
|
||||
|
||||
// Destroy the attached contacts.
|
||||
b2ContactEdge* ce = m_contactList;
|
||||
while (ce)
|
||||
{
|
||||
b2ContactEdge* ce0 = ce;
|
||||
ce = ce->next;
|
||||
m_world->m_contactManager.Destroy(ce0->contact);
|
||||
}
|
||||
m_contactList = NULL;
|
||||
}
|
||||
}
|
||||
802
AndEngine/jni/Box2D/Dynamics/b2Body.h
Normal file
802
AndEngine/jni/Box2D/Dynamics/b2Body.h
Normal file
@@ -0,0 +1,802 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef B2_BODY_H
|
||||
#define B2_BODY_H
|
||||
|
||||
#include "Box2D/Common/b2Math.h"
|
||||
#include "Box2D/Collision/Shapes/b2Shape.h"
|
||||
#include <new>
|
||||
|
||||
class b2Fixture;
|
||||
class b2Joint;
|
||||
class b2Contact;
|
||||
class b2Controller;
|
||||
class b2World;
|
||||
struct b2FixtureDef;
|
||||
struct b2JointEdge;
|
||||
struct b2ContactEdge;
|
||||
|
||||
/// The body type.
|
||||
/// static: zero mass, zero velocity, may be manually moved
|
||||
/// kinematic: zero mass, non-zero velocity set by user, moved by solver
|
||||
/// dynamic: positive mass, non-zero velocity determined by forces, moved by solver
|
||||
enum b2BodyType
|
||||
{
|
||||
b2_staticBody = 0,
|
||||
b2_kinematicBody,
|
||||
b2_dynamicBody,
|
||||
};
|
||||
|
||||
/// A body definition holds all the data needed to construct a rigid body.
|
||||
/// You can safely re-use body definitions. Shapes are added to a body after construction.
|
||||
struct b2BodyDef
|
||||
{
|
||||
/// This constructor sets the body definition default values.
|
||||
b2BodyDef()
|
||||
{
|
||||
userData = NULL;
|
||||
position.Set(0.0f, 0.0f);
|
||||
angle = 0.0f;
|
||||
linearVelocity.Set(0.0f, 0.0f);
|
||||
angularVelocity = 0.0f;
|
||||
linearDamping = 0.0f;
|
||||
angularDamping = 0.0f;
|
||||
allowSleep = true;
|
||||
awake = true;
|
||||
fixedRotation = false;
|
||||
bullet = false;
|
||||
type = b2_staticBody;
|
||||
active = true;
|
||||
inertiaScale = 1.0f;
|
||||
}
|
||||
|
||||
/// The body type: static, kinematic, or dynamic.
|
||||
/// Note: if a dynamic body would have zero mass, the mass is set to one.
|
||||
b2BodyType type;
|
||||
|
||||
/// The world position of the body. Avoid creating bodies at the origin
|
||||
/// since this can lead to many overlapping shapes.
|
||||
b2Vec2 position;
|
||||
|
||||
/// The world angle of the body in radians.
|
||||
float32 angle;
|
||||
|
||||
/// The linear velocity of the body's origin in world co-ordinates.
|
||||
b2Vec2 linearVelocity;
|
||||
|
||||
/// The angular velocity of the body.
|
||||
float32 angularVelocity;
|
||||
|
||||
/// Linear damping is use to reduce the linear velocity. The damping parameter
|
||||
/// can be larger than 1.0f but the damping effect becomes sensitive to the
|
||||
/// time step when the damping parameter is large.
|
||||
float32 linearDamping;
|
||||
|
||||
/// Angular damping is use to reduce the angular velocity. The damping parameter
|
||||
/// can be larger than 1.0f but the damping effect becomes sensitive to the
|
||||
/// time step when the damping parameter is large.
|
||||
float32 angularDamping;
|
||||
|
||||
/// Set this flag to false if this body should never fall asleep. Note that
|
||||
/// this increases CPU usage.
|
||||
bool allowSleep;
|
||||
|
||||
/// Is this body initially awake or sleeping?
|
||||
bool awake;
|
||||
|
||||
/// Should this body be prevented from rotating? Useful for characters.
|
||||
bool fixedRotation;
|
||||
|
||||
/// Is this a fast moving body that should be prevented from tunneling through
|
||||
/// other moving bodies? Note that all bodies are prevented from tunneling through
|
||||
/// kinematic and static bodies. This setting is only considered on dynamic bodies.
|
||||
/// @warning You should use this flag sparingly since it increases processing time.
|
||||
bool bullet;
|
||||
|
||||
/// Does this body start out active?
|
||||
bool active;
|
||||
|
||||
/// Use this to store application specific body data.
|
||||
void* userData;
|
||||
|
||||
/// Experimental: scales the inertia tensor.
|
||||
float32 inertiaScale;
|
||||
};
|
||||
|
||||
/// A rigid body. These are created via b2World::CreateBody.
|
||||
class b2Body
|
||||
{
|
||||
public:
|
||||
/// Creates a fixture and attach it to this body. Use this function if you need
|
||||
/// to set some fixture parameters, like friction. Otherwise you can create the
|
||||
/// fixture directly from a shape.
|
||||
/// If the density is non-zero, this function automatically updates the mass of the body.
|
||||
/// Contacts are not created until the next time step.
|
||||
/// @param def the fixture definition.
|
||||
/// @warning This function is locked during callbacks.
|
||||
b2Fixture* CreateFixture(const b2FixtureDef* def);
|
||||
|
||||
/// Creates a fixture from a shape and attach it to this body.
|
||||
/// This is a convenience function. Use b2FixtureDef if you need to set parameters
|
||||
/// like friction, restitution, user data, or filtering.
|
||||
/// If the density is non-zero, this function automatically updates the mass of the body.
|
||||
/// @param shape the shape to be cloned.
|
||||
/// @param density the shape density (set to zero for static bodies).
|
||||
/// @warning This function is locked during callbacks.
|
||||
b2Fixture* CreateFixture(const b2Shape* shape, float32 density);
|
||||
|
||||
/// Destroy a fixture. This removes the fixture from the broad-phase and
|
||||
/// destroys all contacts associated with this fixture. This will
|
||||
/// automatically adjust the mass of the body if the body is dynamic and the
|
||||
/// fixture has positive density.
|
||||
/// All fixtures attached to a body are implicitly destroyed when the body is destroyed.
|
||||
/// @param fixture the fixture to be removed.
|
||||
/// @warning This function is locked during callbacks.
|
||||
void DestroyFixture(b2Fixture* fixture);
|
||||
|
||||
/// Set the position of the body's origin and rotation.
|
||||
/// This breaks any contacts and wakes the other bodies.
|
||||
/// Manipulating a body's transform may cause non-physical behavior.
|
||||
/// @param position the world position of the body's local origin.
|
||||
/// @param angle the world rotation in radians.
|
||||
void SetTransform(const b2Vec2& position, float32 angle);
|
||||
|
||||
/// Get the body transform for the body's origin.
|
||||
/// @return the world transform of the body's origin.
|
||||
const b2Transform& GetTransform() const;
|
||||
|
||||
/// Get the world body origin position.
|
||||
/// @return the world position of the body's origin.
|
||||
const b2Vec2& GetPosition() const;
|
||||
|
||||
/// Get the angle in radians.
|
||||
/// @return the current world rotation angle in radians.
|
||||
float32 GetAngle() const;
|
||||
|
||||
/// Get the world position of the center of mass.
|
||||
const b2Vec2& GetWorldCenter() const;
|
||||
|
||||
/// Get the local position of the center of mass.
|
||||
const b2Vec2& GetLocalCenter() const;
|
||||
|
||||
/// Set the linear velocity of the center of mass.
|
||||
/// @param v the new linear velocity of the center of mass.
|
||||
void SetLinearVelocity(const b2Vec2& v);
|
||||
|
||||
/// Get the linear velocity of the center of mass.
|
||||
/// @return the linear velocity of the center of mass.
|
||||
b2Vec2 GetLinearVelocity() const;
|
||||
|
||||
/// Set the angular velocity.
|
||||
/// @param omega the new angular velocity in radians/second.
|
||||
void SetAngularVelocity(float32 omega);
|
||||
|
||||
/// Get the angular velocity.
|
||||
/// @return the angular velocity in radians/second.
|
||||
float32 GetAngularVelocity() const;
|
||||
|
||||
/// Apply a force at a world point. If the force is not
|
||||
/// applied at the center of mass, it will generate a torque and
|
||||
/// affect the angular velocity. This wakes up the body.
|
||||
/// @param force the world force vector, usually in Newtons (N).
|
||||
/// @param point the world position of the point of application.
|
||||
void ApplyForce(const b2Vec2& force, const b2Vec2& point);
|
||||
|
||||
/// Apply a torque. This affects the angular velocity
|
||||
/// without affecting the linear velocity of the center of mass.
|
||||
/// This wakes up the body.
|
||||
/// @param torque about the z-axis (out of the screen), usually in N-m.
|
||||
void ApplyTorque(float32 torque);
|
||||
|
||||
/// Apply an impulse at a point. This immediately modifies the velocity.
|
||||
/// It also modifies the angular velocity if the point of application
|
||||
/// is not at the center of mass. This wakes up the body.
|
||||
/// @param impulse the world impulse vector, usually in N-seconds or kg-m/s.
|
||||
/// @param point the world position of the point of application.
|
||||
void ApplyLinearImpulse(const b2Vec2& impulse, const b2Vec2& point);
|
||||
|
||||
/// Apply an angular impulse.
|
||||
/// @param impulse the angular impulse in units of kg*m*m/s
|
||||
void ApplyAngularImpulse(float32 impulse);
|
||||
|
||||
/// Get the total mass of the body.
|
||||
/// @return the mass, usually in kilograms (kg).
|
||||
float32 GetMass() const;
|
||||
|
||||
/// Get the rotational inertia of the body about the local origin.
|
||||
/// @return the rotational inertia, usually in kg-m^2.
|
||||
float32 GetInertia() const;
|
||||
|
||||
/// Get the mass data of the body.
|
||||
/// @return a struct containing the mass, inertia and center of the body.
|
||||
void GetMassData(b2MassData* data) const;
|
||||
|
||||
/// Set the mass properties to override the mass properties of the fixtures.
|
||||
/// Note that this changes the center of mass position.
|
||||
/// Note that creating or destroying fixtures can also alter the mass.
|
||||
/// This function has no effect if the body isn't dynamic.
|
||||
/// @param massData the mass properties.
|
||||
void SetMassData(const b2MassData* data);
|
||||
|
||||
/// This resets the mass properties to the sum of the mass properties of the fixtures.
|
||||
/// This normally does not need to be called unless you called SetMassData to override
|
||||
/// the mass and you later want to reset the mass.
|
||||
void ResetMassData();
|
||||
|
||||
/// Get the world coordinates of a point given the local coordinates.
|
||||
/// @param localPoint a point on the body measured relative the the body's origin.
|
||||
/// @return the same point expressed in world coordinates.
|
||||
b2Vec2 GetWorldPoint(const b2Vec2& localPoint) const;
|
||||
|
||||
/// Get the world coordinates of a vector given the local coordinates.
|
||||
/// @param localVector a vector fixed in the body.
|
||||
/// @return the same vector expressed in world coordinates.
|
||||
b2Vec2 GetWorldVector(const b2Vec2& localVector) const;
|
||||
|
||||
/// Gets a local point relative to the body's origin given a world point.
|
||||
/// @param a point in world coordinates.
|
||||
/// @return the corresponding local point relative to the body's origin.
|
||||
b2Vec2 GetLocalPoint(const b2Vec2& worldPoint) const;
|
||||
|
||||
/// Gets a local vector given a world vector.
|
||||
/// @param a vector in world coordinates.
|
||||
/// @return the corresponding local vector.
|
||||
b2Vec2 GetLocalVector(const b2Vec2& worldVector) const;
|
||||
|
||||
/// Get the world linear velocity of a world point attached to this body.
|
||||
/// @param a point in world coordinates.
|
||||
/// @return the world velocity of a point.
|
||||
b2Vec2 GetLinearVelocityFromWorldPoint(const b2Vec2& worldPoint) const;
|
||||
|
||||
/// Get the world velocity of a local point.
|
||||
/// @param a point in local coordinates.
|
||||
/// @return the world velocity of a point.
|
||||
b2Vec2 GetLinearVelocityFromLocalPoint(const b2Vec2& localPoint) const;
|
||||
|
||||
/// Get the linear damping of the body.
|
||||
float32 GetLinearDamping() const;
|
||||
|
||||
/// Set the linear damping of the body.
|
||||
void SetLinearDamping(float32 linearDamping);
|
||||
|
||||
/// Get the angular damping of the body.
|
||||
float32 GetAngularDamping() const;
|
||||
|
||||
/// Set the angular damping of the body.
|
||||
void SetAngularDamping(float32 angularDamping);
|
||||
|
||||
/// Set the type of this body. This may alter the mass and velocity.
|
||||
void SetType(b2BodyType type);
|
||||
|
||||
/// Get the type of this body.
|
||||
b2BodyType GetType() const;
|
||||
|
||||
/// Should this body be treated like a bullet for continuous collision detection?
|
||||
void SetBullet(bool flag);
|
||||
|
||||
/// Is this body treated like a bullet for continuous collision detection?
|
||||
bool IsBullet() const;
|
||||
|
||||
/// You can disable sleeping on this body. If you disable sleeping, the
|
||||
/// body will be woken.
|
||||
void SetSleepingAllowed(bool flag);
|
||||
|
||||
/// Is this body allowed to sleep
|
||||
bool IsSleepingAllowed() const;
|
||||
|
||||
/// Set the sleep state of the body. A sleeping body has very
|
||||
/// low CPU cost.
|
||||
/// @param flag set to true to put body to sleep, false to wake it.
|
||||
void SetAwake(bool flag);
|
||||
|
||||
/// Get the sleeping state of this body.
|
||||
/// @return true if the body is sleeping.
|
||||
bool IsAwake() const;
|
||||
|
||||
/// Set the active state of the body. An inactive body is not
|
||||
/// simulated and cannot be collided with or woken up.
|
||||
/// If you pass a flag of true, all fixtures will be added to the
|
||||
/// broad-phase.
|
||||
/// If you pass a flag of false, all fixtures will be removed from
|
||||
/// the broad-phase and all contacts will be destroyed.
|
||||
/// Fixtures and joints are otherwise unaffected. You may continue
|
||||
/// to create/destroy fixtures and joints on inactive bodies.
|
||||
/// Fixtures on an inactive body are implicitly inactive and will
|
||||
/// not participate in collisions, ray-casts, or queries.
|
||||
/// Joints connected to an inactive body are implicitly inactive.
|
||||
/// An inactive body is still owned by a b2World object and remains
|
||||
/// in the body list.
|
||||
void SetActive(bool flag);
|
||||
|
||||
/// Get the active state of the body.
|
||||
bool IsActive() const;
|
||||
|
||||
/// Set this body to have fixed rotation. This causes the mass
|
||||
/// to be reset.
|
||||
void SetFixedRotation(bool flag);
|
||||
|
||||
/// Does this body have fixed rotation?
|
||||
bool IsFixedRotation() const;
|
||||
|
||||
/// Get the list of all fixtures attached to this body.
|
||||
b2Fixture* GetFixtureList();
|
||||
const b2Fixture* GetFixtureList() const;
|
||||
|
||||
/// Get the list of all joints attached to this body.
|
||||
b2JointEdge* GetJointList();
|
||||
const b2JointEdge* GetJointList() const;
|
||||
|
||||
/// Get the list of all contacts attached to this body.
|
||||
/// @warning this list changes during the time step and you may
|
||||
/// miss some collisions if you don't use b2ContactListener.
|
||||
b2ContactEdge* GetContactList();
|
||||
const b2ContactEdge* GetContactList() const;
|
||||
|
||||
/// Get the next body in the world's body list.
|
||||
b2Body* GetNext();
|
||||
const b2Body* GetNext() const;
|
||||
|
||||
/// Get the user data pointer that was provided in the body definition.
|
||||
void* GetUserData() const;
|
||||
|
||||
/// Set the user data. Use this to store your application specific data.
|
||||
void SetUserData(void* data);
|
||||
|
||||
/// Get the parent world of this body.
|
||||
b2World* GetWorld();
|
||||
const b2World* GetWorld() const;
|
||||
|
||||
private:
|
||||
|
||||
friend class b2World;
|
||||
friend class b2Island;
|
||||
friend class b2ContactManager;
|
||||
friend class b2ContactSolver;
|
||||
friend class b2TOISolver;
|
||||
|
||||
friend class b2DistanceJoint;
|
||||
friend class b2GearJoint;
|
||||
friend class b2LineJoint;
|
||||
friend class b2MouseJoint;
|
||||
friend class b2PrismaticJoint;
|
||||
friend class b2PulleyJoint;
|
||||
friend class b2RevoluteJoint;
|
||||
friend class b2WeldJoint;
|
||||
friend class b2FrictionJoint;
|
||||
|
||||
// m_flags
|
||||
enum
|
||||
{
|
||||
e_islandFlag = 0x0001,
|
||||
e_awakeFlag = 0x0002,
|
||||
e_autoSleepFlag = 0x0004,
|
||||
e_bulletFlag = 0x0008,
|
||||
e_fixedRotationFlag = 0x0010,
|
||||
e_activeFlag = 0x0020,
|
||||
e_toiFlag = 0x0040,
|
||||
};
|
||||
|
||||
b2Body(const b2BodyDef* bd, b2World* world);
|
||||
~b2Body();
|
||||
|
||||
void SynchronizeFixtures();
|
||||
void SynchronizeTransform();
|
||||
|
||||
// This is used to prevent connected bodies from colliding.
|
||||
// It may lie, depending on the collideConnected flag.
|
||||
bool ShouldCollide(const b2Body* other) const;
|
||||
|
||||
void Advance(float32 t);
|
||||
|
||||
b2BodyType m_type;
|
||||
|
||||
uint16 m_flags;
|
||||
|
||||
int32 m_islandIndex;
|
||||
|
||||
b2Transform m_xf; // the body origin transform
|
||||
b2Sweep m_sweep; // the swept motion for CCD
|
||||
|
||||
b2Vec2 m_linearVelocity;
|
||||
float32 m_angularVelocity;
|
||||
|
||||
b2Vec2 m_force;
|
||||
float32 m_torque;
|
||||
|
||||
b2World* m_world;
|
||||
b2Body* m_prev;
|
||||
b2Body* m_next;
|
||||
|
||||
b2Fixture* m_fixtureList;
|
||||
int32 m_fixtureCount;
|
||||
|
||||
b2JointEdge* m_jointList;
|
||||
b2ContactEdge* m_contactList;
|
||||
|
||||
float32 m_mass, m_invMass;
|
||||
|
||||
// Rotational inertia about the center of mass.
|
||||
float32 m_I, m_invI;
|
||||
|
||||
float32 m_linearDamping;
|
||||
float32 m_angularDamping;
|
||||
|
||||
float32 m_sleepTime;
|
||||
|
||||
void* m_userData;
|
||||
};
|
||||
|
||||
inline b2BodyType b2Body::GetType() const
|
||||
{
|
||||
return m_type;
|
||||
}
|
||||
|
||||
inline const b2Transform& b2Body::GetTransform() const
|
||||
{
|
||||
return m_xf;
|
||||
}
|
||||
|
||||
inline const b2Vec2& b2Body::GetPosition() const
|
||||
{
|
||||
return m_xf.position;
|
||||
}
|
||||
|
||||
inline float32 b2Body::GetAngle() const
|
||||
{
|
||||
return m_sweep.a;
|
||||
}
|
||||
|
||||
inline const b2Vec2& b2Body::GetWorldCenter() const
|
||||
{
|
||||
return m_sweep.c;
|
||||
}
|
||||
|
||||
inline const b2Vec2& b2Body::GetLocalCenter() const
|
||||
{
|
||||
return m_sweep.localCenter;
|
||||
}
|
||||
|
||||
inline void b2Body::SetLinearVelocity(const b2Vec2& v)
|
||||
{
|
||||
if (m_type == b2_staticBody)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
if (b2Dot(v,v) > 0.0f)
|
||||
{
|
||||
SetAwake(true);
|
||||
}
|
||||
|
||||
m_linearVelocity = v;
|
||||
}
|
||||
|
||||
inline b2Vec2 b2Body::GetLinearVelocity() const
|
||||
{
|
||||
return m_linearVelocity;
|
||||
}
|
||||
|
||||
inline void b2Body::SetAngularVelocity(float32 w)
|
||||
{
|
||||
if (m_type == b2_staticBody)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
if (w * w > 0.0f)
|
||||
{
|
||||
SetAwake(true);
|
||||
}
|
||||
|
||||
m_angularVelocity = w;
|
||||
}
|
||||
|
||||
inline float32 b2Body::GetAngularVelocity() const
|
||||
{
|
||||
return m_angularVelocity;
|
||||
}
|
||||
|
||||
inline float32 b2Body::GetMass() const
|
||||
{
|
||||
return m_mass;
|
||||
}
|
||||
|
||||
inline float32 b2Body::GetInertia() const
|
||||
{
|
||||
return m_I + m_mass * b2Dot(m_sweep.localCenter, m_sweep.localCenter);
|
||||
}
|
||||
|
||||
inline void b2Body::GetMassData(b2MassData* data) const
|
||||
{
|
||||
data->mass = m_mass;
|
||||
data->I = m_I + m_mass * b2Dot(m_sweep.localCenter, m_sweep.localCenter);
|
||||
data->center = m_sweep.localCenter;
|
||||
}
|
||||
|
||||
inline b2Vec2 b2Body::GetWorldPoint(const b2Vec2& localPoint) const
|
||||
{
|
||||
return b2Mul(m_xf, localPoint);
|
||||
}
|
||||
|
||||
inline b2Vec2 b2Body::GetWorldVector(const b2Vec2& localVector) const
|
||||
{
|
||||
return b2Mul(m_xf.R, localVector);
|
||||
}
|
||||
|
||||
inline b2Vec2 b2Body::GetLocalPoint(const b2Vec2& worldPoint) const
|
||||
{
|
||||
return b2MulT(m_xf, worldPoint);
|
||||
}
|
||||
|
||||
inline b2Vec2 b2Body::GetLocalVector(const b2Vec2& worldVector) const
|
||||
{
|
||||
return b2MulT(m_xf.R, worldVector);
|
||||
}
|
||||
|
||||
inline b2Vec2 b2Body::GetLinearVelocityFromWorldPoint(const b2Vec2& worldPoint) const
|
||||
{
|
||||
return m_linearVelocity + b2Cross(m_angularVelocity, worldPoint - m_sweep.c);
|
||||
}
|
||||
|
||||
inline b2Vec2 b2Body::GetLinearVelocityFromLocalPoint(const b2Vec2& localPoint) const
|
||||
{
|
||||
return GetLinearVelocityFromWorldPoint(GetWorldPoint(localPoint));
|
||||
}
|
||||
|
||||
inline float32 b2Body::GetLinearDamping() const
|
||||
{
|
||||
return m_linearDamping;
|
||||
}
|
||||
|
||||
inline void b2Body::SetLinearDamping(float32 linearDamping)
|
||||
{
|
||||
m_linearDamping = linearDamping;
|
||||
}
|
||||
|
||||
inline float32 b2Body::GetAngularDamping() const
|
||||
{
|
||||
return m_angularDamping;
|
||||
}
|
||||
|
||||
inline void b2Body::SetAngularDamping(float32 angularDamping)
|
||||
{
|
||||
m_angularDamping = angularDamping;
|
||||
}
|
||||
|
||||
inline void b2Body::SetBullet(bool flag)
|
||||
{
|
||||
if (flag)
|
||||
{
|
||||
m_flags |= e_bulletFlag;
|
||||
}
|
||||
else
|
||||
{
|
||||
m_flags &= ~e_bulletFlag;
|
||||
}
|
||||
}
|
||||
|
||||
inline bool b2Body::IsBullet() const
|
||||
{
|
||||
return (m_flags & e_bulletFlag) == e_bulletFlag;
|
||||
}
|
||||
|
||||
inline void b2Body::SetAwake(bool flag)
|
||||
{
|
||||
if (flag)
|
||||
{
|
||||
if ((m_flags & e_awakeFlag) == 0)
|
||||
{
|
||||
m_flags |= e_awakeFlag;
|
||||
m_sleepTime = 0.0f;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
m_flags &= ~e_awakeFlag;
|
||||
m_sleepTime = 0.0f;
|
||||
m_linearVelocity.SetZero();
|
||||
m_angularVelocity = 0.0f;
|
||||
m_force.SetZero();
|
||||
m_torque = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
inline bool b2Body::IsAwake() const
|
||||
{
|
||||
return (m_flags & e_awakeFlag) == e_awakeFlag;
|
||||
}
|
||||
|
||||
inline bool b2Body::IsActive() const
|
||||
{
|
||||
return (m_flags & e_activeFlag) == e_activeFlag;
|
||||
}
|
||||
|
||||
inline void b2Body::SetFixedRotation(bool flag)
|
||||
{
|
||||
if (flag)
|
||||
{
|
||||
m_flags |= e_fixedRotationFlag;
|
||||
}
|
||||
else
|
||||
{
|
||||
m_flags &= ~e_fixedRotationFlag;
|
||||
}
|
||||
|
||||
ResetMassData();
|
||||
}
|
||||
|
||||
inline bool b2Body::IsFixedRotation() const
|
||||
{
|
||||
return (m_flags & e_fixedRotationFlag) == e_fixedRotationFlag;
|
||||
}
|
||||
|
||||
inline void b2Body::SetSleepingAllowed(bool flag)
|
||||
{
|
||||
if (flag)
|
||||
{
|
||||
m_flags |= e_autoSleepFlag;
|
||||
}
|
||||
else
|
||||
{
|
||||
m_flags &= ~e_autoSleepFlag;
|
||||
SetAwake(true);
|
||||
}
|
||||
}
|
||||
|
||||
inline bool b2Body::IsSleepingAllowed() const
|
||||
{
|
||||
return (m_flags & e_autoSleepFlag) == e_autoSleepFlag;
|
||||
}
|
||||
|
||||
inline b2Fixture* b2Body::GetFixtureList()
|
||||
{
|
||||
return m_fixtureList;
|
||||
}
|
||||
|
||||
inline const b2Fixture* b2Body::GetFixtureList() const
|
||||
{
|
||||
return m_fixtureList;
|
||||
}
|
||||
|
||||
inline b2JointEdge* b2Body::GetJointList()
|
||||
{
|
||||
return m_jointList;
|
||||
}
|
||||
|
||||
inline const b2JointEdge* b2Body::GetJointList() const
|
||||
{
|
||||
return m_jointList;
|
||||
}
|
||||
|
||||
inline b2ContactEdge* b2Body::GetContactList()
|
||||
{
|
||||
return m_contactList;
|
||||
}
|
||||
|
||||
inline const b2ContactEdge* b2Body::GetContactList() const
|
||||
{
|
||||
return m_contactList;
|
||||
}
|
||||
|
||||
inline b2Body* b2Body::GetNext()
|
||||
{
|
||||
return m_next;
|
||||
}
|
||||
|
||||
inline const b2Body* b2Body::GetNext() const
|
||||
{
|
||||
return m_next;
|
||||
}
|
||||
|
||||
inline void b2Body::SetUserData(void* data)
|
||||
{
|
||||
m_userData = data;
|
||||
}
|
||||
|
||||
inline void* b2Body::GetUserData() const
|
||||
{
|
||||
return m_userData;
|
||||
}
|
||||
|
||||
inline void b2Body::ApplyForce(const b2Vec2& force, const b2Vec2& point)
|
||||
{
|
||||
if (m_type != b2_dynamicBody)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
if (IsAwake() == false)
|
||||
{
|
||||
SetAwake(true);
|
||||
}
|
||||
|
||||
m_force += force;
|
||||
m_torque += b2Cross(point - m_sweep.c, force);
|
||||
}
|
||||
|
||||
inline void b2Body::ApplyTorque(float32 torque)
|
||||
{
|
||||
if (m_type != b2_dynamicBody)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
if (IsAwake() == false)
|
||||
{
|
||||
SetAwake(true);
|
||||
}
|
||||
|
||||
m_torque += torque;
|
||||
}
|
||||
|
||||
inline void b2Body::ApplyLinearImpulse(const b2Vec2& impulse, const b2Vec2& point)
|
||||
{
|
||||
if (m_type != b2_dynamicBody)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
if (IsAwake() == false)
|
||||
{
|
||||
SetAwake(true);
|
||||
}
|
||||
m_linearVelocity += m_invMass * impulse;
|
||||
m_angularVelocity += m_invI * b2Cross(point - m_sweep.c, impulse);
|
||||
}
|
||||
|
||||
inline void b2Body::ApplyAngularImpulse(float32 impulse)
|
||||
{
|
||||
if (m_type != b2_dynamicBody)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
if (IsAwake() == false)
|
||||
{
|
||||
SetAwake(true);
|
||||
}
|
||||
m_angularVelocity += m_invI * impulse;
|
||||
}
|
||||
|
||||
inline void b2Body::SynchronizeTransform()
|
||||
{
|
||||
m_xf.R.Set(m_sweep.a);
|
||||
m_xf.position = m_sweep.c - b2Mul(m_xf.R, m_sweep.localCenter);
|
||||
}
|
||||
|
||||
inline void b2Body::Advance(float32 t)
|
||||
{
|
||||
// Advance to the new safe time.
|
||||
m_sweep.Advance(t);
|
||||
m_sweep.c = m_sweep.c0;
|
||||
m_sweep.a = m_sweep.a0;
|
||||
SynchronizeTransform();
|
||||
}
|
||||
|
||||
inline b2World* b2Body::GetWorld()
|
||||
{
|
||||
return m_world;
|
||||
}
|
||||
|
||||
inline const b2World* b2Body::GetWorld() const
|
||||
{
|
||||
return m_world;
|
||||
}
|
||||
|
||||
#endif
|
||||
266
AndEngine/jni/Box2D/Dynamics/b2ContactManager.cpp
Normal file
266
AndEngine/jni/Box2D/Dynamics/b2ContactManager.cpp
Normal file
@@ -0,0 +1,266 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#include "Box2D/Dynamics/b2ContactManager.h"
|
||||
#include "Box2D/Dynamics/b2Body.h"
|
||||
#include "Box2D/Dynamics/b2Fixture.h"
|
||||
#include "Box2D/Dynamics/b2WorldCallbacks.h"
|
||||
#include "Box2D/Dynamics/Contacts/b2Contact.h"
|
||||
|
||||
b2ContactFilter b2_defaultFilter;
|
||||
b2ContactListener b2_defaultListener;
|
||||
|
||||
b2ContactManager::b2ContactManager()
|
||||
{
|
||||
m_contactList = NULL;
|
||||
m_contactCount = 0;
|
||||
m_contactFilter = &b2_defaultFilter;
|
||||
m_contactListener = &b2_defaultListener;
|
||||
m_allocator = NULL;
|
||||
}
|
||||
|
||||
void b2ContactManager::Destroy(b2Contact* c)
|
||||
{
|
||||
b2Fixture* fixtureA = c->GetFixtureA();
|
||||
b2Fixture* fixtureB = c->GetFixtureB();
|
||||
b2Body* bodyA = fixtureA->GetBody();
|
||||
b2Body* bodyB = fixtureB->GetBody();
|
||||
|
||||
if (m_contactListener && c->IsTouching())
|
||||
{
|
||||
m_contactListener->EndContact(c);
|
||||
}
|
||||
|
||||
// Remove from the world.
|
||||
if (c->m_prev)
|
||||
{
|
||||
c->m_prev->m_next = c->m_next;
|
||||
}
|
||||
|
||||
if (c->m_next)
|
||||
{
|
||||
c->m_next->m_prev = c->m_prev;
|
||||
}
|
||||
|
||||
if (c == m_contactList)
|
||||
{
|
||||
m_contactList = c->m_next;
|
||||
}
|
||||
|
||||
// Remove from body 1
|
||||
if (c->m_nodeA.prev)
|
||||
{
|
||||
c->m_nodeA.prev->next = c->m_nodeA.next;
|
||||
}
|
||||
|
||||
if (c->m_nodeA.next)
|
||||
{
|
||||
c->m_nodeA.next->prev = c->m_nodeA.prev;
|
||||
}
|
||||
|
||||
if (&c->m_nodeA == bodyA->m_contactList)
|
||||
{
|
||||
bodyA->m_contactList = c->m_nodeA.next;
|
||||
}
|
||||
|
||||
// Remove from body 2
|
||||
if (c->m_nodeB.prev)
|
||||
{
|
||||
c->m_nodeB.prev->next = c->m_nodeB.next;
|
||||
}
|
||||
|
||||
if (c->m_nodeB.next)
|
||||
{
|
||||
c->m_nodeB.next->prev = c->m_nodeB.prev;
|
||||
}
|
||||
|
||||
if (&c->m_nodeB == bodyB->m_contactList)
|
||||
{
|
||||
bodyB->m_contactList = c->m_nodeB.next;
|
||||
}
|
||||
|
||||
// Call the factory.
|
||||
b2Contact::Destroy(c, m_allocator);
|
||||
--m_contactCount;
|
||||
}
|
||||
|
||||
// This is the top level collision call for the time step. Here
|
||||
// all the narrow phase collision is processed for the world
|
||||
// contact list.
|
||||
void b2ContactManager::Collide()
|
||||
{
|
||||
// Update awake contacts.
|
||||
b2Contact* c = m_contactList;
|
||||
while (c)
|
||||
{
|
||||
b2Fixture* fixtureA = c->GetFixtureA();
|
||||
b2Fixture* fixtureB = c->GetFixtureB();
|
||||
b2Body* bodyA = fixtureA->GetBody();
|
||||
b2Body* bodyB = fixtureB->GetBody();
|
||||
|
||||
if (bodyA->IsAwake() == false && bodyB->IsAwake() == false)
|
||||
{
|
||||
c = c->GetNext();
|
||||
continue;
|
||||
}
|
||||
|
||||
// Is this contact flagged for filtering?
|
||||
if (c->m_flags & b2Contact::e_filterFlag)
|
||||
{
|
||||
// Should these bodies collide?
|
||||
if (bodyB->ShouldCollide(bodyA) == false)
|
||||
{
|
||||
b2Contact* cNuke = c;
|
||||
c = cNuke->GetNext();
|
||||
Destroy(cNuke);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Check user filtering.
|
||||
if (m_contactFilter && m_contactFilter->ShouldCollide(fixtureA, fixtureB) == false)
|
||||
{
|
||||
b2Contact* cNuke = c;
|
||||
c = cNuke->GetNext();
|
||||
Destroy(cNuke);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Clear the filtering flag.
|
||||
c->m_flags &= ~b2Contact::e_filterFlag;
|
||||
}
|
||||
|
||||
int32 proxyIdA = fixtureA->m_proxyId;
|
||||
int32 proxyIdB = fixtureB->m_proxyId;
|
||||
bool overlap = m_broadPhase.TestOverlap(proxyIdA, proxyIdB);
|
||||
|
||||
// Here we destroy contacts that cease to overlap in the broad-phase.
|
||||
if (overlap == false)
|
||||
{
|
||||
b2Contact* cNuke = c;
|
||||
c = cNuke->GetNext();
|
||||
Destroy(cNuke);
|
||||
continue;
|
||||
}
|
||||
|
||||
// The contact persists.
|
||||
c->Update(m_contactListener);
|
||||
c = c->GetNext();
|
||||
}
|
||||
}
|
||||
|
||||
void b2ContactManager::FindNewContacts()
|
||||
{
|
||||
m_broadPhase.UpdatePairs(this);
|
||||
}
|
||||
|
||||
void b2ContactManager::AddPair(void* proxyUserDataA, void* proxyUserDataB)
|
||||
{
|
||||
b2Fixture* fixtureA = (b2Fixture*)proxyUserDataA;
|
||||
b2Fixture* fixtureB = (b2Fixture*)proxyUserDataB;
|
||||
|
||||
b2Body* bodyA = fixtureA->GetBody();
|
||||
b2Body* bodyB = fixtureB->GetBody();
|
||||
|
||||
// Are the fixtures on the same body?
|
||||
if (bodyA == bodyB)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
// Does a contact already exist?
|
||||
b2ContactEdge* edge = bodyB->GetContactList();
|
||||
while (edge)
|
||||
{
|
||||
if (edge->other == bodyA)
|
||||
{
|
||||
b2Fixture* fA = edge->contact->GetFixtureA();
|
||||
b2Fixture* fB = edge->contact->GetFixtureB();
|
||||
if (fA == fixtureA && fB == fixtureB)
|
||||
{
|
||||
// A contact already exists.
|
||||
return;
|
||||
}
|
||||
|
||||
if (fA == fixtureB && fB == fixtureA)
|
||||
{
|
||||
// A contact already exists.
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
edge = edge->next;
|
||||
}
|
||||
|
||||
// Does a joint override collision? Is at least one body dynamic?
|
||||
if (bodyB->ShouldCollide(bodyA) == false)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
// Check user filtering.
|
||||
if (m_contactFilter && m_contactFilter->ShouldCollide(fixtureA, fixtureB) == false)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
// Call the factory.
|
||||
b2Contact* c = b2Contact::Create(fixtureA, fixtureB, m_allocator);
|
||||
|
||||
// Contact creation may swap fixtures.
|
||||
fixtureA = c->GetFixtureA();
|
||||
fixtureB = c->GetFixtureB();
|
||||
bodyA = fixtureA->GetBody();
|
||||
bodyB = fixtureB->GetBody();
|
||||
|
||||
// Insert into the world.
|
||||
c->m_prev = NULL;
|
||||
c->m_next = m_contactList;
|
||||
if (m_contactList != NULL)
|
||||
{
|
||||
m_contactList->m_prev = c;
|
||||
}
|
||||
m_contactList = c;
|
||||
|
||||
// Connect to island graph.
|
||||
|
||||
// Connect to body A
|
||||
c->m_nodeA.contact = c;
|
||||
c->m_nodeA.other = bodyB;
|
||||
|
||||
c->m_nodeA.prev = NULL;
|
||||
c->m_nodeA.next = bodyA->m_contactList;
|
||||
if (bodyA->m_contactList != NULL)
|
||||
{
|
||||
bodyA->m_contactList->prev = &c->m_nodeA;
|
||||
}
|
||||
bodyA->m_contactList = &c->m_nodeA;
|
||||
|
||||
// Connect to body B
|
||||
c->m_nodeB.contact = c;
|
||||
c->m_nodeB.other = bodyA;
|
||||
|
||||
c->m_nodeB.prev = NULL;
|
||||
c->m_nodeB.next = bodyB->m_contactList;
|
||||
if (bodyB->m_contactList != NULL)
|
||||
{
|
||||
bodyB->m_contactList->prev = &c->m_nodeB;
|
||||
}
|
||||
bodyB->m_contactList = &c->m_nodeB;
|
||||
|
||||
++m_contactCount;
|
||||
}
|
||||
52
AndEngine/jni/Box2D/Dynamics/b2ContactManager.h
Normal file
52
AndEngine/jni/Box2D/Dynamics/b2ContactManager.h
Normal file
@@ -0,0 +1,52 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef B2_CONTACT_MANAGER_H
|
||||
#define B2_CONTACT_MANAGER_H
|
||||
|
||||
#include "Box2D/Collision/b2BroadPhase.h"
|
||||
|
||||
class b2Contact;
|
||||
class b2ContactFilter;
|
||||
class b2ContactListener;
|
||||
class b2BlockAllocator;
|
||||
|
||||
// Delegate of b2World.
|
||||
class b2ContactManager
|
||||
{
|
||||
public:
|
||||
b2ContactManager();
|
||||
|
||||
// Broad-phase callback.
|
||||
void AddPair(void* proxyUserDataA, void* proxyUserDataB);
|
||||
|
||||
void FindNewContacts();
|
||||
|
||||
void Destroy(b2Contact* c);
|
||||
|
||||
void Collide();
|
||||
|
||||
b2BroadPhase m_broadPhase;
|
||||
b2Contact* m_contactList;
|
||||
int32 m_contactCount;
|
||||
b2ContactFilter* m_contactFilter;
|
||||
b2ContactListener* m_contactListener;
|
||||
b2BlockAllocator* m_allocator;
|
||||
};
|
||||
|
||||
#endif
|
||||
163
AndEngine/jni/Box2D/Dynamics/b2Fixture.cpp
Normal file
163
AndEngine/jni/Box2D/Dynamics/b2Fixture.cpp
Normal file
@@ -0,0 +1,163 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#include "Box2D/Dynamics/b2Fixture.h"
|
||||
#include "Box2D/Dynamics/Contacts/b2Contact.h"
|
||||
#include "Box2D/Collision/Shapes/b2CircleShape.h"
|
||||
#include "Box2D/Collision/Shapes/b2PolygonShape.h"
|
||||
#include "Box2D/Collision/b2BroadPhase.h"
|
||||
#include "Box2D/Collision/b2Collision.h"
|
||||
#include "Box2D/Common/b2BlockAllocator.h"
|
||||
|
||||
|
||||
b2Fixture::b2Fixture()
|
||||
{
|
||||
m_userData = NULL;
|
||||
m_body = NULL;
|
||||
m_next = NULL;
|
||||
m_proxyId = b2BroadPhase::e_nullProxy;
|
||||
m_shape = NULL;
|
||||
m_density = 0.0f;
|
||||
}
|
||||
|
||||
b2Fixture::~b2Fixture()
|
||||
{
|
||||
b2Assert(m_shape == NULL);
|
||||
b2Assert(m_proxyId == b2BroadPhase::e_nullProxy);
|
||||
}
|
||||
|
||||
void b2Fixture::Create(b2BlockAllocator* allocator, b2Body* body, const b2FixtureDef* def)
|
||||
{
|
||||
m_userData = def->userData;
|
||||
m_friction = def->friction;
|
||||
m_restitution = def->restitution;
|
||||
|
||||
m_body = body;
|
||||
m_next = NULL;
|
||||
|
||||
m_filter = def->filter;
|
||||
|
||||
m_isSensor = def->isSensor;
|
||||
|
||||
m_shape = def->shape->Clone(allocator);
|
||||
|
||||
m_density = def->density;
|
||||
}
|
||||
|
||||
void b2Fixture::Destroy(b2BlockAllocator* allocator)
|
||||
{
|
||||
// The proxy must be destroyed before calling this.
|
||||
b2Assert(m_proxyId == b2BroadPhase::e_nullProxy);
|
||||
|
||||
// Free the child shape.
|
||||
switch (m_shape->m_type)
|
||||
{
|
||||
case b2Shape::e_circle:
|
||||
{
|
||||
b2CircleShape* s = (b2CircleShape*)m_shape;
|
||||
s->~b2CircleShape();
|
||||
allocator->Free(s, sizeof(b2CircleShape));
|
||||
}
|
||||
break;
|
||||
|
||||
case b2Shape::e_polygon:
|
||||
{
|
||||
b2PolygonShape* s = (b2PolygonShape*)m_shape;
|
||||
s->~b2PolygonShape();
|
||||
allocator->Free(s, sizeof(b2PolygonShape));
|
||||
}
|
||||
break;
|
||||
|
||||
default:
|
||||
b2Assert(false);
|
||||
break;
|
||||
}
|
||||
|
||||
m_shape = NULL;
|
||||
}
|
||||
|
||||
void b2Fixture::CreateProxy(b2BroadPhase* broadPhase, const b2Transform& xf)
|
||||
{
|
||||
b2Assert(m_proxyId == b2BroadPhase::e_nullProxy);
|
||||
|
||||
// Create proxy in the broad-phase.
|
||||
m_shape->ComputeAABB(&m_aabb, xf);
|
||||
m_proxyId = broadPhase->CreateProxy(m_aabb, this);
|
||||
}
|
||||
|
||||
void b2Fixture::DestroyProxy(b2BroadPhase* broadPhase)
|
||||
{
|
||||
if (m_proxyId == b2BroadPhase::e_nullProxy)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
// Destroy proxy in the broad-phase.
|
||||
broadPhase->DestroyProxy(m_proxyId);
|
||||
m_proxyId = b2BroadPhase::e_nullProxy;
|
||||
}
|
||||
|
||||
void b2Fixture::Synchronize(b2BroadPhase* broadPhase, const b2Transform& transform1, const b2Transform& transform2)
|
||||
{
|
||||
if (m_proxyId == b2BroadPhase::e_nullProxy)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
// Compute an AABB that covers the swept shape (may miss some rotation effect).
|
||||
b2AABB aabb1, aabb2;
|
||||
m_shape->ComputeAABB(&aabb1, transform1);
|
||||
m_shape->ComputeAABB(&aabb2, transform2);
|
||||
|
||||
m_aabb.Combine(aabb1, aabb2);
|
||||
|
||||
b2Vec2 displacement = transform2.position - transform1.position;
|
||||
|
||||
broadPhase->MoveProxy(m_proxyId, m_aabb, displacement);
|
||||
}
|
||||
|
||||
void b2Fixture::SetFilterData(const b2Filter& filter)
|
||||
{
|
||||
m_filter = filter;
|
||||
|
||||
if (m_body == NULL)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
// Flag associated contacts for filtering.
|
||||
b2ContactEdge* edge = m_body->GetContactList();
|
||||
while (edge)
|
||||
{
|
||||
b2Contact* contact = edge->contact;
|
||||
b2Fixture* fixtureA = contact->GetFixtureA();
|
||||
b2Fixture* fixtureB = contact->GetFixtureB();
|
||||
if (fixtureA == this || fixtureB == this)
|
||||
{
|
||||
contact->FlagForFiltering();
|
||||
}
|
||||
|
||||
edge = edge->next;
|
||||
}
|
||||
}
|
||||
|
||||
void b2Fixture::SetSensor(bool sensor)
|
||||
{
|
||||
m_isSensor = sensor;
|
||||
}
|
||||
|
||||
326
AndEngine/jni/Box2D/Dynamics/b2Fixture.h
Normal file
326
AndEngine/jni/Box2D/Dynamics/b2Fixture.h
Normal file
@@ -0,0 +1,326 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef B2_FIXTURE_H
|
||||
#define B2_FIXTURE_H
|
||||
|
||||
#include "Box2D/Dynamics/b2Body.h"
|
||||
#include "Box2D/Collision/b2Collision.h"
|
||||
#include "Box2D/Collision/Shapes/b2Shape.h"
|
||||
|
||||
class b2BlockAllocator;
|
||||
class b2Body;
|
||||
class b2BroadPhase;
|
||||
|
||||
/// This holds contact filtering data.
|
||||
struct b2Filter
|
||||
{
|
||||
/// The collision category bits. Normally you would just set one bit.
|
||||
uint16 categoryBits;
|
||||
|
||||
/// The collision mask bits. This states the categories that this
|
||||
/// shape would accept for collision.
|
||||
uint16 maskBits;
|
||||
|
||||
/// Collision groups allow a certain group of objects to never collide (negative)
|
||||
/// or always collide (positive). Zero means no collision group. Non-zero group
|
||||
/// filtering always wins against the mask bits.
|
||||
int16 groupIndex;
|
||||
};
|
||||
|
||||
/// A fixture definition is used to create a fixture. This class defines an
|
||||
/// abstract fixture definition. You can reuse fixture definitions safely.
|
||||
struct b2FixtureDef
|
||||
{
|
||||
/// The constructor sets the default fixture definition values.
|
||||
b2FixtureDef()
|
||||
{
|
||||
shape = NULL;
|
||||
userData = NULL;
|
||||
friction = 0.2f;
|
||||
restitution = 0.0f;
|
||||
density = 0.0f;
|
||||
filter.categoryBits = 0x0001;
|
||||
filter.maskBits = 0xFFFF;
|
||||
filter.groupIndex = 0;
|
||||
isSensor = false;
|
||||
}
|
||||
|
||||
virtual ~b2FixtureDef() {}
|
||||
|
||||
/// The shape, this must be set. The shape will be cloned, so you
|
||||
/// can create the shape on the stack.
|
||||
const b2Shape* shape;
|
||||
|
||||
/// Use this to store application specific fixture data.
|
||||
void* userData;
|
||||
|
||||
/// The friction coefficient, usually in the range [0,1].
|
||||
float32 friction;
|
||||
|
||||
/// The restitution (elasticity) usually in the range [0,1].
|
||||
float32 restitution;
|
||||
|
||||
/// The density, usually in kg/m^2.
|
||||
float32 density;
|
||||
|
||||
/// A sensor shape collects contact information but never generates a collision
|
||||
/// response.
|
||||
bool isSensor;
|
||||
|
||||
/// Contact filtering data.
|
||||
b2Filter filter;
|
||||
};
|
||||
|
||||
|
||||
/// A fixture is used to attach a shape to a body for collision detection. A fixture
|
||||
/// inherits its transform from its parent. Fixtures hold additional non-geometric data
|
||||
/// such as friction, collision filters, etc.
|
||||
/// Fixtures are created via b2Body::CreateFixture.
|
||||
/// @warning you cannot reuse fixtures.
|
||||
class b2Fixture
|
||||
{
|
||||
public:
|
||||
/// Get the type of the child shape. You can use this to down cast to the concrete shape.
|
||||
/// @return the shape type.
|
||||
b2Shape::Type GetType() const;
|
||||
|
||||
/// Get the child shape. You can modify the child shape, however you should not change the
|
||||
/// number of vertices because this will crash some collision caching mechanisms.
|
||||
/// Manipulating the shape may lead to non-physical behavior.
|
||||
b2Shape* GetShape();
|
||||
const b2Shape* GetShape() const;
|
||||
|
||||
/// Set if this fixture is a sensor.
|
||||
void SetSensor(bool sensor);
|
||||
|
||||
/// Is this fixture a sensor (non-solid)?
|
||||
/// @return the true if the shape is a sensor.
|
||||
bool IsSensor() const;
|
||||
|
||||
/// Set the contact filtering data. This will not update contacts until the next time
|
||||
/// step when either parent body is active and awake.
|
||||
void SetFilterData(const b2Filter& filter);
|
||||
|
||||
/// Get the contact filtering data.
|
||||
const b2Filter& GetFilterData() const;
|
||||
|
||||
/// Get the parent body of this fixture. This is NULL if the fixture is not attached.
|
||||
/// @return the parent body.
|
||||
b2Body* GetBody();
|
||||
const b2Body* GetBody() const;
|
||||
|
||||
/// Get the next fixture in the parent body's fixture list.
|
||||
/// @return the next shape.
|
||||
b2Fixture* GetNext();
|
||||
const b2Fixture* GetNext() const;
|
||||
|
||||
/// Get the user data that was assigned in the fixture definition. Use this to
|
||||
/// store your application specific data.
|
||||
void* GetUserData() const;
|
||||
|
||||
/// Set the user data. Use this to store your application specific data.
|
||||
void SetUserData(void* data);
|
||||
|
||||
/// Test a point for containment in this fixture.
|
||||
/// @param xf the shape world transform.
|
||||
/// @param p a point in world coordinates.
|
||||
bool TestPoint(const b2Vec2& p) const;
|
||||
|
||||
/// Cast a ray against this shape.
|
||||
/// @param output the ray-cast results.
|
||||
/// @param input the ray-cast input parameters.
|
||||
bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input) const;
|
||||
|
||||
/// Get the mass data for this fixture. The mass data is based on the density and
|
||||
/// the shape. The rotational inertia is about the shape's origin. This operation
|
||||
/// may be expensive.
|
||||
void GetMassData(b2MassData* massData) const;
|
||||
|
||||
/// Set the density of this fixture. This will _not_ automatically adjust the mass
|
||||
/// of the body. You must call b2Body::ResetMassData to update the body's mass.
|
||||
void SetDensity(float32 density);
|
||||
|
||||
/// Get the density of this fixture.
|
||||
float32 GetDensity() const;
|
||||
|
||||
/// Get the coefficient of friction.
|
||||
float32 GetFriction() const;
|
||||
|
||||
/// Set the coefficient of friction.
|
||||
void SetFriction(float32 friction);
|
||||
|
||||
/// Get the coefficient of restitution.
|
||||
float32 GetRestitution() const;
|
||||
|
||||
/// Set the coefficient of restitution.
|
||||
void SetRestitution(float32 restitution);
|
||||
|
||||
/// Get the fixture's AABB. This AABB may be enlarge and/or stale.
|
||||
/// If you need a more accurate AABB, compute it using the shape and
|
||||
/// the body transform.
|
||||
const b2AABB& GetAABB() const;
|
||||
|
||||
protected:
|
||||
|
||||
friend class b2Body;
|
||||
friend class b2World;
|
||||
friend class b2Contact;
|
||||
friend class b2ContactManager;
|
||||
|
||||
b2Fixture();
|
||||
~b2Fixture();
|
||||
|
||||
// We need separation create/destroy functions from the constructor/destructor because
|
||||
// the destructor cannot access the allocator (no destructor arguments allowed by C++).
|
||||
void Create(b2BlockAllocator* allocator, b2Body* body, const b2FixtureDef* def);
|
||||
void Destroy(b2BlockAllocator* allocator);
|
||||
|
||||
// These support body activation/deactivation.
|
||||
void CreateProxy(b2BroadPhase* broadPhase, const b2Transform& xf);
|
||||
void DestroyProxy(b2BroadPhase* broadPhase);
|
||||
|
||||
void Synchronize(b2BroadPhase* broadPhase, const b2Transform& xf1, const b2Transform& xf2);
|
||||
|
||||
b2AABB m_aabb;
|
||||
|
||||
float32 m_density;
|
||||
|
||||
b2Fixture* m_next;
|
||||
b2Body* m_body;
|
||||
|
||||
b2Shape* m_shape;
|
||||
|
||||
float32 m_friction;
|
||||
float32 m_restitution;
|
||||
|
||||
int32 m_proxyId;
|
||||
b2Filter m_filter;
|
||||
|
||||
bool m_isSensor;
|
||||
|
||||
void* m_userData;
|
||||
};
|
||||
|
||||
inline b2Shape::Type b2Fixture::GetType() const
|
||||
{
|
||||
return m_shape->GetType();
|
||||
}
|
||||
|
||||
inline b2Shape* b2Fixture::GetShape()
|
||||
{
|
||||
return m_shape;
|
||||
}
|
||||
|
||||
inline const b2Shape* b2Fixture::GetShape() const
|
||||
{
|
||||
return m_shape;
|
||||
}
|
||||
|
||||
inline bool b2Fixture::IsSensor() const
|
||||
{
|
||||
return m_isSensor;
|
||||
}
|
||||
|
||||
inline const b2Filter& b2Fixture::GetFilterData() const
|
||||
{
|
||||
return m_filter;
|
||||
}
|
||||
|
||||
inline void* b2Fixture::GetUserData() const
|
||||
{
|
||||
return m_userData;
|
||||
}
|
||||
|
||||
inline void b2Fixture::SetUserData(void* data)
|
||||
{
|
||||
m_userData = data;
|
||||
}
|
||||
|
||||
inline b2Body* b2Fixture::GetBody()
|
||||
{
|
||||
return m_body;
|
||||
}
|
||||
|
||||
inline const b2Body* b2Fixture::GetBody() const
|
||||
{
|
||||
return m_body;
|
||||
}
|
||||
|
||||
inline b2Fixture* b2Fixture::GetNext()
|
||||
{
|
||||
return m_next;
|
||||
}
|
||||
|
||||
inline const b2Fixture* b2Fixture::GetNext() const
|
||||
{
|
||||
return m_next;
|
||||
}
|
||||
|
||||
inline void b2Fixture::SetDensity(float32 density)
|
||||
{
|
||||
b2Assert(b2IsValid(density) && density >= 0.0f);
|
||||
m_density = density;
|
||||
}
|
||||
|
||||
inline float32 b2Fixture::GetDensity() const
|
||||
{
|
||||
return m_density;
|
||||
}
|
||||
|
||||
inline float32 b2Fixture::GetFriction() const
|
||||
{
|
||||
return m_friction;
|
||||
}
|
||||
|
||||
inline void b2Fixture::SetFriction(float32 friction)
|
||||
{
|
||||
m_friction = friction;
|
||||
}
|
||||
|
||||
inline float32 b2Fixture::GetRestitution() const
|
||||
{
|
||||
return m_restitution;
|
||||
}
|
||||
|
||||
inline void b2Fixture::SetRestitution(float32 restitution)
|
||||
{
|
||||
m_restitution = restitution;
|
||||
}
|
||||
|
||||
inline bool b2Fixture::TestPoint(const b2Vec2& p) const
|
||||
{
|
||||
return m_shape->TestPoint(m_body->GetTransform(), p);
|
||||
}
|
||||
|
||||
inline bool b2Fixture::RayCast(b2RayCastOutput* output, const b2RayCastInput& input) const
|
||||
{
|
||||
return m_shape->RayCast(output, input, m_body->GetTransform());
|
||||
}
|
||||
|
||||
inline void b2Fixture::GetMassData(b2MassData* massData) const
|
||||
{
|
||||
m_shape->ComputeMass(massData, m_density);
|
||||
}
|
||||
|
||||
inline const b2AABB& b2Fixture::GetAABB() const
|
||||
{
|
||||
return m_aabb;
|
||||
}
|
||||
|
||||
#endif
|
||||
374
AndEngine/jni/Box2D/Dynamics/b2Island.cpp
Normal file
374
AndEngine/jni/Box2D/Dynamics/b2Island.cpp
Normal file
@@ -0,0 +1,374 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#include "Box2D/Dynamics/b2Island.h"
|
||||
#include "Box2D/Dynamics/b2Body.h"
|
||||
#include "Box2D/Dynamics/b2Fixture.h"
|
||||
#include "Box2D/Dynamics/b2World.h"
|
||||
#include "Box2D/Dynamics/Contacts/b2Contact.h"
|
||||
#include "Box2D/Dynamics/Contacts/b2ContactSolver.h"
|
||||
#include "Box2D/Dynamics/Joints/b2Joint.h"
|
||||
#include "Box2D/Common/b2StackAllocator.h"
|
||||
|
||||
/*
|
||||
Position Correction Notes
|
||||
=========================
|
||||
I tried the several algorithms for position correction of the 2D revolute joint.
|
||||
I looked at these systems:
|
||||
- simple pendulum (1m diameter sphere on massless 5m stick) with initial angular velocity of 100 rad/s.
|
||||
- suspension bridge with 30 1m long planks of length 1m.
|
||||
- multi-link chain with 30 1m long links.
|
||||
|
||||
Here are the algorithms:
|
||||
|
||||
Baumgarte - A fraction of the position error is added to the velocity error. There is no
|
||||
separate position solver.
|
||||
|
||||
Pseudo Velocities - After the velocity solver and position integration,
|
||||
the position error, Jacobian, and effective mass are recomputed. Then
|
||||
the velocity constraints are solved with pseudo velocities and a fraction
|
||||
of the position error is added to the pseudo velocity error. The pseudo
|
||||
velocities are initialized to zero and there is no warm-starting. After
|
||||
the position solver, the pseudo velocities are added to the positions.
|
||||
This is also called the First Order World method or the Position LCP method.
|
||||
|
||||
Modified Nonlinear Gauss-Seidel (NGS) - Like Pseudo Velocities except the
|
||||
position error is re-computed for each constraint and the positions are updated
|
||||
after the constraint is solved. The radius vectors (aka Jacobians) are
|
||||
re-computed too (otherwise the algorithm has horrible instability). The pseudo
|
||||
velocity states are not needed because they are effectively zero at the beginning
|
||||
of each iteration. Since we have the current position error, we allow the
|
||||
iterations to terminate early if the error becomes smaller than b2_linearSlop.
|
||||
|
||||
Full NGS or just NGS - Like Modified NGS except the effective mass are re-computed
|
||||
each time a constraint is solved.
|
||||
|
||||
Here are the results:
|
||||
Baumgarte - this is the cheapest algorithm but it has some stability problems,
|
||||
especially with the bridge. The chain links separate easily close to the root
|
||||
and they jitter as they struggle to pull together. This is one of the most common
|
||||
methods in the field. The big drawback is that the position correction artificially
|
||||
affects the momentum, thus leading to instabilities and false bounce. I used a
|
||||
bias factor of 0.2. A larger bias factor makes the bridge less stable, a smaller
|
||||
factor makes joints and contacts more spongy.
|
||||
|
||||
Pseudo Velocities - the is more stable than the Baumgarte method. The bridge is
|
||||
stable. However, joints still separate with large angular velocities. Drag the
|
||||
simple pendulum in a circle quickly and the joint will separate. The chain separates
|
||||
easily and does not recover. I used a bias factor of 0.2. A larger value lead to
|
||||
the bridge collapsing when a heavy cube drops on it.
|
||||
|
||||
Modified NGS - this algorithm is better in some ways than Baumgarte and Pseudo
|
||||
Velocities, but in other ways it is worse. The bridge and chain are much more
|
||||
stable, but the simple pendulum goes unstable at high angular velocities.
|
||||
|
||||
Full NGS - stable in all tests. The joints display good stiffness. The bridge
|
||||
still sags, but this is better than infinite forces.
|
||||
|
||||
Recommendations
|
||||
Pseudo Velocities are not really worthwhile because the bridge and chain cannot
|
||||
recover from joint separation. In other cases the benefit over Baumgarte is small.
|
||||
|
||||
Modified NGS is not a robust method for the revolute joint due to the violent
|
||||
instability seen in the simple pendulum. Perhaps it is viable with other constraint
|
||||
types, especially scalar constraints where the effective mass is a scalar.
|
||||
|
||||
This leaves Baumgarte and Full NGS. Baumgarte has small, but manageable instabilities
|
||||
and is very fast. I don't think we can escape Baumgarte, especially in highly
|
||||
demanding cases where high constraint fidelity is not needed.
|
||||
|
||||
Full NGS is robust and easy on the eyes. I recommend this as an option for
|
||||
higher fidelity simulation and certainly for suspension bridges and long chains.
|
||||
Full NGS might be a good choice for ragdolls, especially motorized ragdolls where
|
||||
joint separation can be problematic. The number of NGS iterations can be reduced
|
||||
for better performance without harming robustness much.
|
||||
|
||||
Each joint in a can be handled differently in the position solver. So I recommend
|
||||
a system where the user can select the algorithm on a per joint basis. I would
|
||||
probably default to the slower Full NGS and let the user select the faster
|
||||
Baumgarte method in performance critical scenarios.
|
||||
*/
|
||||
|
||||
/*
|
||||
Cache Performance
|
||||
|
||||
The Box2D solvers are dominated by cache misses. Data structures are designed
|
||||
to increase the number of cache hits. Much of misses are due to random access
|
||||
to body data. The constraint structures are iterated over linearly, which leads
|
||||
to few cache misses.
|
||||
|
||||
The bodies are not accessed during iteration. Instead read only data, such as
|
||||
the mass values are stored with the constraints. The mutable data are the constraint
|
||||
impulses and the bodies velocities/positions. The impulses are held inside the
|
||||
constraint structures. The body velocities/positions are held in compact, temporary
|
||||
arrays to increase the number of cache hits. Linear and angular velocity are
|
||||
stored in a single array since multiple arrays lead to multiple misses.
|
||||
*/
|
||||
|
||||
/*
|
||||
2D Rotation
|
||||
|
||||
R = [cos(theta) -sin(theta)]
|
||||
[sin(theta) cos(theta) ]
|
||||
|
||||
thetaDot = omega
|
||||
|
||||
Let q1 = cos(theta), q2 = sin(theta).
|
||||
R = [q1 -q2]
|
||||
[q2 q1]
|
||||
|
||||
q1Dot = -thetaDot * q2
|
||||
q2Dot = thetaDot * q1
|
||||
|
||||
q1_new = q1_old - dt * w * q2
|
||||
q2_new = q2_old + dt * w * q1
|
||||
then normalize.
|
||||
|
||||
This might be faster than computing sin+cos.
|
||||
However, we can compute sin+cos of the same angle fast.
|
||||
*/
|
||||
|
||||
b2Island::b2Island(
|
||||
int32 bodyCapacity,
|
||||
int32 contactCapacity,
|
||||
int32 jointCapacity,
|
||||
b2StackAllocator* allocator,
|
||||
b2ContactListener* listener)
|
||||
{
|
||||
m_bodyCapacity = bodyCapacity;
|
||||
m_contactCapacity = contactCapacity;
|
||||
m_jointCapacity = jointCapacity;
|
||||
m_bodyCount = 0;
|
||||
m_contactCount = 0;
|
||||
m_jointCount = 0;
|
||||
|
||||
m_allocator = allocator;
|
||||
m_listener = listener;
|
||||
|
||||
m_bodies = (b2Body**)m_allocator->Allocate(bodyCapacity * sizeof(b2Body*));
|
||||
m_contacts = (b2Contact**)m_allocator->Allocate(contactCapacity * sizeof(b2Contact*));
|
||||
m_joints = (b2Joint**)m_allocator->Allocate(jointCapacity * sizeof(b2Joint*));
|
||||
|
||||
m_velocities = (b2Velocity*)m_allocator->Allocate(m_bodyCapacity * sizeof(b2Velocity));
|
||||
m_positions = (b2Position*)m_allocator->Allocate(m_bodyCapacity * sizeof(b2Position));
|
||||
}
|
||||
|
||||
b2Island::~b2Island()
|
||||
{
|
||||
// Warning: the order should reverse the constructor order.
|
||||
m_allocator->Free(m_positions);
|
||||
m_allocator->Free(m_velocities);
|
||||
m_allocator->Free(m_joints);
|
||||
m_allocator->Free(m_contacts);
|
||||
m_allocator->Free(m_bodies);
|
||||
}
|
||||
|
||||
void b2Island::Solve(const b2TimeStep& step, const b2Vec2& gravity, bool allowSleep)
|
||||
{
|
||||
// Integrate velocities and apply damping.
|
||||
for (int32 i = 0; i < m_bodyCount; ++i)
|
||||
{
|
||||
b2Body* b = m_bodies[i];
|
||||
|
||||
if (b->GetType() != b2_dynamicBody)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
// Integrate velocities.
|
||||
b->m_linearVelocity += step.dt * (gravity + b->m_invMass * b->m_force);
|
||||
b->m_angularVelocity += step.dt * b->m_invI * b->m_torque;
|
||||
|
||||
// Apply damping.
|
||||
// ODE: dv/dt + c * v = 0
|
||||
// Solution: v(t) = v0 * exp(-c * t)
|
||||
// Time step: v(t + dt) = v0 * exp(-c * (t + dt)) = v0 * exp(-c * t) * exp(-c * dt) = v * exp(-c * dt)
|
||||
// v2 = exp(-c * dt) * v1
|
||||
// Taylor expansion:
|
||||
// v2 = (1.0f - c * dt) * v1
|
||||
b->m_linearVelocity *= b2Clamp(1.0f - step.dt * b->m_linearDamping, 0.0f, 1.0f);
|
||||
b->m_angularVelocity *= b2Clamp(1.0f - step.dt * b->m_angularDamping, 0.0f, 1.0f);
|
||||
}
|
||||
|
||||
// Partition contacts so that contacts with static bodies are solved last.
|
||||
int32 i1 = -1;
|
||||
for (int32 i2 = 0; i2 < m_contactCount; ++i2)
|
||||
{
|
||||
b2Fixture* fixtureA = m_contacts[i2]->GetFixtureA();
|
||||
b2Fixture* fixtureB = m_contacts[i2]->GetFixtureB();
|
||||
b2Body* bodyA = fixtureA->GetBody();
|
||||
b2Body* bodyB = fixtureB->GetBody();
|
||||
bool nonStatic = bodyA->GetType() != b2_staticBody && bodyB->GetType() != b2_staticBody;
|
||||
if (nonStatic)
|
||||
{
|
||||
++i1;
|
||||
b2Swap(m_contacts[i1], m_contacts[i2]);
|
||||
}
|
||||
}
|
||||
|
||||
// Initialize velocity constraints.
|
||||
b2ContactSolver contactSolver(m_contacts, m_contactCount, m_allocator, step.dtRatio);
|
||||
contactSolver.WarmStart();
|
||||
for (int32 i = 0; i < m_jointCount; ++i)
|
||||
{
|
||||
m_joints[i]->InitVelocityConstraints(step);
|
||||
}
|
||||
|
||||
// Solve velocity constraints.
|
||||
for (int32 i = 0; i < step.velocityIterations; ++i)
|
||||
{
|
||||
for (int32 j = 0; j < m_jointCount; ++j)
|
||||
{
|
||||
m_joints[j]->SolveVelocityConstraints(step);
|
||||
}
|
||||
|
||||
contactSolver.SolveVelocityConstraints();
|
||||
}
|
||||
|
||||
// Post-solve (store impulses for warm starting).
|
||||
contactSolver.StoreImpulses();
|
||||
|
||||
// Integrate positions.
|
||||
for (int32 i = 0; i < m_bodyCount; ++i)
|
||||
{
|
||||
b2Body* b = m_bodies[i];
|
||||
|
||||
if (b->GetType() == b2_staticBody)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
// Check for large velocities.
|
||||
b2Vec2 translation = step.dt * b->m_linearVelocity;
|
||||
if (b2Dot(translation, translation) > b2_maxTranslationSquared)
|
||||
{
|
||||
float32 ratio = b2_maxTranslation / translation.Length();
|
||||
b->m_linearVelocity *= ratio;
|
||||
}
|
||||
|
||||
float32 rotation = step.dt * b->m_angularVelocity;
|
||||
if (rotation * rotation > b2_maxRotationSquared)
|
||||
{
|
||||
float32 ratio = b2_maxRotation / b2Abs(rotation);
|
||||
b->m_angularVelocity *= ratio;
|
||||
}
|
||||
|
||||
// Store positions for continuous collision.
|
||||
b->m_sweep.c0 = b->m_sweep.c;
|
||||
b->m_sweep.a0 = b->m_sweep.a;
|
||||
|
||||
// Integrate
|
||||
b->m_sweep.c += step.dt * b->m_linearVelocity;
|
||||
b->m_sweep.a += step.dt * b->m_angularVelocity;
|
||||
|
||||
// Compute new transform
|
||||
b->SynchronizeTransform();
|
||||
|
||||
// Note: shapes are synchronized later.
|
||||
}
|
||||
|
||||
// Iterate over constraints.
|
||||
for (int32 i = 0; i < step.positionIterations; ++i)
|
||||
{
|
||||
bool contactsOkay = contactSolver.SolvePositionConstraints(b2_contactBaumgarte);
|
||||
|
||||
bool jointsOkay = true;
|
||||
for (int32 i = 0; i < m_jointCount; ++i)
|
||||
{
|
||||
bool jointOkay = m_joints[i]->SolvePositionConstraints(b2_contactBaumgarte);
|
||||
jointsOkay = jointsOkay && jointOkay;
|
||||
}
|
||||
|
||||
if (contactsOkay && jointsOkay)
|
||||
{
|
||||
// Exit early if the position errors are small.
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
Report(contactSolver.m_constraints);
|
||||
|
||||
if (allowSleep)
|
||||
{
|
||||
float32 minSleepTime = b2_maxFloat;
|
||||
|
||||
const float32 linTolSqr = b2_linearSleepTolerance * b2_linearSleepTolerance;
|
||||
const float32 angTolSqr = b2_angularSleepTolerance * b2_angularSleepTolerance;
|
||||
|
||||
for (int32 i = 0; i < m_bodyCount; ++i)
|
||||
{
|
||||
b2Body* b = m_bodies[i];
|
||||
if (b->GetType() == b2_staticBody)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
if ((b->m_flags & b2Body::e_autoSleepFlag) == 0)
|
||||
{
|
||||
b->m_sleepTime = 0.0f;
|
||||
minSleepTime = 0.0f;
|
||||
}
|
||||
|
||||
if ((b->m_flags & b2Body::e_autoSleepFlag) == 0 ||
|
||||
b->m_angularVelocity * b->m_angularVelocity > angTolSqr ||
|
||||
b2Dot(b->m_linearVelocity, b->m_linearVelocity) > linTolSqr)
|
||||
{
|
||||
b->m_sleepTime = 0.0f;
|
||||
minSleepTime = 0.0f;
|
||||
}
|
||||
else
|
||||
{
|
||||
b->m_sleepTime += step.dt;
|
||||
minSleepTime = b2Min(minSleepTime, b->m_sleepTime);
|
||||
}
|
||||
}
|
||||
|
||||
if (minSleepTime >= b2_timeToSleep)
|
||||
{
|
||||
for (int32 i = 0; i < m_bodyCount; ++i)
|
||||
{
|
||||
b2Body* b = m_bodies[i];
|
||||
b->SetAwake(false);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void b2Island::Report(const b2ContactConstraint* constraints)
|
||||
{
|
||||
if (m_listener == NULL)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
for (int32 i = 0; i < m_contactCount; ++i)
|
||||
{
|
||||
b2Contact* c = m_contacts[i];
|
||||
|
||||
const b2ContactConstraint* cc = constraints + i;
|
||||
|
||||
b2ContactImpulse impulse;
|
||||
for (int32 j = 0; j < cc->pointCount; ++j)
|
||||
{
|
||||
impulse.normalImpulses[j] = cc->points[j].normalImpulse;
|
||||
impulse.tangentImpulses[j] = cc->points[j].tangentImpulse;
|
||||
}
|
||||
|
||||
m_listener->PostSolve(c, &impulse);
|
||||
}
|
||||
}
|
||||
105
AndEngine/jni/Box2D/Dynamics/b2Island.h
Normal file
105
AndEngine/jni/Box2D/Dynamics/b2Island.h
Normal file
@@ -0,0 +1,105 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef B2_ISLAND_H
|
||||
#define B2_ISLAND_H
|
||||
|
||||
#include "Box2D/Common/b2Math.h"
|
||||
#include "Box2D/Dynamics/b2Body.h"
|
||||
#include "Box2D/Dynamics/b2TimeStep.h"
|
||||
|
||||
class b2Contact;
|
||||
class b2Joint;
|
||||
class b2StackAllocator;
|
||||
class b2ContactListener;
|
||||
struct b2ContactConstraint;
|
||||
|
||||
/// This is an internal structure.
|
||||
struct b2Position
|
||||
{
|
||||
b2Vec2 x;
|
||||
float32 a;
|
||||
};
|
||||
|
||||
/// This is an internal structure.
|
||||
struct b2Velocity
|
||||
{
|
||||
b2Vec2 v;
|
||||
float32 w;
|
||||
};
|
||||
|
||||
/// This is an internal class.
|
||||
class b2Island
|
||||
{
|
||||
public:
|
||||
b2Island(int32 bodyCapacity, int32 contactCapacity, int32 jointCapacity,
|
||||
b2StackAllocator* allocator, b2ContactListener* listener);
|
||||
~b2Island();
|
||||
|
||||
void Clear()
|
||||
{
|
||||
m_bodyCount = 0;
|
||||
m_contactCount = 0;
|
||||
m_jointCount = 0;
|
||||
}
|
||||
|
||||
void Solve(const b2TimeStep& step, const b2Vec2& gravity, bool allowSleep);
|
||||
|
||||
void Add(b2Body* body)
|
||||
{
|
||||
b2Assert(m_bodyCount < m_bodyCapacity);
|
||||
body->m_islandIndex = m_bodyCount;
|
||||
m_bodies[m_bodyCount++] = body;
|
||||
}
|
||||
|
||||
void Add(b2Contact* contact)
|
||||
{
|
||||
b2Assert(m_contactCount < m_contactCapacity);
|
||||
m_contacts[m_contactCount++] = contact;
|
||||
}
|
||||
|
||||
void Add(b2Joint* joint)
|
||||
{
|
||||
b2Assert(m_jointCount < m_jointCapacity);
|
||||
m_joints[m_jointCount++] = joint;
|
||||
}
|
||||
|
||||
void Report(const b2ContactConstraint* constraints);
|
||||
|
||||
b2StackAllocator* m_allocator;
|
||||
b2ContactListener* m_listener;
|
||||
|
||||
b2Body** m_bodies;
|
||||
b2Contact** m_contacts;
|
||||
b2Joint** m_joints;
|
||||
|
||||
b2Position* m_positions;
|
||||
b2Velocity* m_velocities;
|
||||
|
||||
int32 m_bodyCount;
|
||||
int32 m_jointCount;
|
||||
int32 m_contactCount;
|
||||
|
||||
int32 m_bodyCapacity;
|
||||
int32 m_contactCapacity;
|
||||
int32 m_jointCapacity;
|
||||
|
||||
int32 m_positionIterationCount;
|
||||
};
|
||||
|
||||
#endif
|
||||
35
AndEngine/jni/Box2D/Dynamics/b2TimeStep.h
Normal file
35
AndEngine/jni/Box2D/Dynamics/b2TimeStep.h
Normal file
@@ -0,0 +1,35 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef B2_TIME_STEP_H
|
||||
#define B2_TIME_STEP_H
|
||||
|
||||
#include "Box2D/Common/b2Settings.h"
|
||||
|
||||
/// This is an internal structure.
|
||||
struct b2TimeStep
|
||||
{
|
||||
float32 dt; // time step
|
||||
float32 inv_dt; // inverse time step (0 if dt == 0).
|
||||
float32 dtRatio; // dt * inv_dt0
|
||||
int32 velocityIterations;
|
||||
int32 positionIterations;
|
||||
bool warmStarting;
|
||||
};
|
||||
|
||||
#endif
|
||||
1076
AndEngine/jni/Box2D/Dynamics/b2World.cpp
Normal file
1076
AndEngine/jni/Box2D/Dynamics/b2World.cpp
Normal file
File diff suppressed because it is too large
Load Diff
285
AndEngine/jni/Box2D/Dynamics/b2World.h
Normal file
285
AndEngine/jni/Box2D/Dynamics/b2World.h
Normal file
@@ -0,0 +1,285 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef B2_WORLD_H
|
||||
#define B2_WORLD_H
|
||||
|
||||
#include "Box2D/Common/b2Math.h"
|
||||
#include "Box2D/Common/b2BlockAllocator.h"
|
||||
#include "Box2D/Common/b2StackAllocator.h"
|
||||
#include "Box2D/Dynamics/b2ContactManager.h"
|
||||
#include "Box2D/Dynamics/b2WorldCallbacks.h"
|
||||
|
||||
struct b2AABB;
|
||||
struct b2BodyDef;
|
||||
struct b2JointDef;
|
||||
struct b2TimeStep;
|
||||
class b2Body;
|
||||
class b2Fixture;
|
||||
class b2Joint;
|
||||
|
||||
/// The world class manages all physics entities, dynamic simulation,
|
||||
/// and asynchronous queries. The world also contains efficient memory
|
||||
/// management facilities.
|
||||
class b2World
|
||||
{
|
||||
public:
|
||||
/// Construct a world object.
|
||||
/// @param gravity the world gravity vector.
|
||||
/// @param doSleep improve performance by not simulating inactive bodies.
|
||||
b2World(const b2Vec2& gravity, bool doSleep);
|
||||
|
||||
/// Destruct the world. All physics entities are destroyed and all heap memory is released.
|
||||
~b2World();
|
||||
|
||||
/// Register a destruction listener. The listener is owned by you and must
|
||||
/// remain in scope.
|
||||
void SetDestructionListener(b2DestructionListener* listener);
|
||||
|
||||
/// Register a contact filter to provide specific control over collision.
|
||||
/// Otherwise the default filter is used (b2_defaultFilter). The listener is
|
||||
/// owned by you and must remain in scope.
|
||||
void SetContactFilter(b2ContactFilter* filter);
|
||||
|
||||
/// Register a contact event listener. The listener is owned by you and must
|
||||
/// remain in scope.
|
||||
void SetContactListener(b2ContactListener* listener);
|
||||
|
||||
/// Register a routine for debug drawing. The debug draw functions are called
|
||||
/// inside with b2World::DrawDebugData method. The debug draw object is owned
|
||||
/// by you and must remain in scope.
|
||||
void SetDebugDraw(b2DebugDraw* debugDraw);
|
||||
|
||||
/// Create a rigid body given a definition. No reference to the definition
|
||||
/// is retained.
|
||||
/// @warning This function is locked during callbacks.
|
||||
b2Body* CreateBody(const b2BodyDef* def);
|
||||
|
||||
/// Destroy a rigid body given a definition. No reference to the definition
|
||||
/// is retained. This function is locked during callbacks.
|
||||
/// @warning This automatically deletes all associated shapes and joints.
|
||||
/// @warning This function is locked during callbacks.
|
||||
void DestroyBody(b2Body* body);
|
||||
|
||||
/// Create a joint to constrain bodies together. No reference to the definition
|
||||
/// is retained. This may cause the connected bodies to cease colliding.
|
||||
/// @warning This function is locked during callbacks.
|
||||
b2Joint* CreateJoint(const b2JointDef* def);
|
||||
|
||||
/// Destroy a joint. This may cause the connected bodies to begin colliding.
|
||||
/// @warning This function is locked during callbacks.
|
||||
void DestroyJoint(b2Joint* joint);
|
||||
|
||||
/// Take a time step. This performs collision detection, integration,
|
||||
/// and constraint solution.
|
||||
/// @param timeStep the amount of time to simulate, this should not vary.
|
||||
/// @param velocityIterations for the velocity constraint solver.
|
||||
/// @param positionIterations for the position constraint solver.
|
||||
void Step( float32 timeStep,
|
||||
int32 velocityIterations,
|
||||
int32 positionIterations);
|
||||
|
||||
/// Call this after you are done with time steps to clear the forces. You normally
|
||||
/// call this after each call to Step, unless you are performing sub-steps. By default,
|
||||
/// forces will be automatically cleared, so you don't need to call this function.
|
||||
/// @see SetAutoClearForces
|
||||
void ClearForces();
|
||||
|
||||
/// Call this to draw shapes and other debug draw data.
|
||||
void DrawDebugData();
|
||||
|
||||
/// Query the world for all fixtures that potentially overlap the
|
||||
/// provided AABB.
|
||||
/// @param callback a user implemented callback class.
|
||||
/// @param aabb the query box.
|
||||
void QueryAABB(b2QueryCallback* callback, const b2AABB& aabb) const;
|
||||
|
||||
/// Ray-cast the world for all fixtures in the path of the ray. Your callback
|
||||
/// controls whether you get the closest point, any point, or n-points.
|
||||
/// The ray-cast ignores shapes that contain the starting point.
|
||||
/// @param callback a user implemented callback class.
|
||||
/// @param point1 the ray starting point
|
||||
/// @param point2 the ray ending point
|
||||
void RayCast(b2RayCastCallback* callback, const b2Vec2& point1, const b2Vec2& point2) const;
|
||||
|
||||
/// Get the world body list. With the returned body, use b2Body::GetNext to get
|
||||
/// the next body in the world list. A NULL body indicates the end of the list.
|
||||
/// @return the head of the world body list.
|
||||
b2Body* GetBodyList();
|
||||
|
||||
/// Get the world joint list. With the returned joint, use b2Joint::GetNext to get
|
||||
/// the next joint in the world list. A NULL joint indicates the end of the list.
|
||||
/// @return the head of the world joint list.
|
||||
b2Joint* GetJointList();
|
||||
|
||||
/// Get the world contact list. With the returned contact, use b2Contact::GetNext to get
|
||||
/// the next contact in the world list. A NULL contact indicates the end of the list.
|
||||
/// @return the head of the world contact list.
|
||||
/// @warning contacts are
|
||||
b2Contact* GetContactList();
|
||||
|
||||
/// Enable/disable warm starting. For testing.
|
||||
void SetWarmStarting(bool flag) { m_warmStarting = flag; }
|
||||
|
||||
/// Enable/disable continuous physics. For testing.
|
||||
void SetContinuousPhysics(bool flag) { m_continuousPhysics = flag; }
|
||||
|
||||
/// Get the number of broad-phase proxies.
|
||||
int32 GetProxyCount() const;
|
||||
|
||||
/// Get the number of bodies.
|
||||
int32 GetBodyCount() const;
|
||||
|
||||
/// Get the number of joints.
|
||||
int32 GetJointCount() const;
|
||||
|
||||
/// Get the number of contacts (each may have 0 or more contact points).
|
||||
int32 GetContactCount() const;
|
||||
|
||||
/// Change the global gravity vector.
|
||||
void SetGravity(const b2Vec2& gravity);
|
||||
|
||||
/// Get the global gravity vector.
|
||||
b2Vec2 GetGravity() const;
|
||||
|
||||
/// Is the world locked (in the middle of a time step).
|
||||
bool IsLocked() const;
|
||||
|
||||
/// Set flag to control automatic clearing of forces after each time step.
|
||||
void SetAutoClearForces(bool flag);
|
||||
|
||||
/// Get the flag that controls automatic clearing of forces after each time step.
|
||||
bool GetAutoClearForces() const;
|
||||
|
||||
private:
|
||||
|
||||
// m_flags
|
||||
enum
|
||||
{
|
||||
e_newFixture = 0x0001,
|
||||
e_locked = 0x0002,
|
||||
e_clearForces = 0x0004,
|
||||
};
|
||||
|
||||
friend class b2Body;
|
||||
friend class b2ContactManager;
|
||||
friend class b2Controller;
|
||||
|
||||
void Solve(const b2TimeStep& step);
|
||||
void SolveTOI();
|
||||
void SolveTOI(b2Body* body);
|
||||
|
||||
void DrawJoint(b2Joint* joint);
|
||||
void DrawShape(b2Fixture* shape, const b2Transform& xf, const b2Color& color);
|
||||
|
||||
b2BlockAllocator m_blockAllocator;
|
||||
b2StackAllocator m_stackAllocator;
|
||||
|
||||
int32 m_flags;
|
||||
|
||||
b2ContactManager m_contactManager;
|
||||
|
||||
b2Body* m_bodyList;
|
||||
b2Joint* m_jointList;
|
||||
|
||||
int32 m_bodyCount;
|
||||
int32 m_jointCount;
|
||||
|
||||
b2Vec2 m_gravity;
|
||||
bool m_allowSleep;
|
||||
|
||||
b2Body* m_groundBody;
|
||||
|
||||
b2DestructionListener* m_destructionListener;
|
||||
b2DebugDraw* m_debugDraw;
|
||||
|
||||
// This is used to compute the time step ratio to
|
||||
// support a variable time step.
|
||||
float32 m_inv_dt0;
|
||||
|
||||
// This is for debugging the solver.
|
||||
bool m_warmStarting;
|
||||
|
||||
// This is for debugging the solver.
|
||||
bool m_continuousPhysics;
|
||||
};
|
||||
|
||||
inline b2Body* b2World::GetBodyList()
|
||||
{
|
||||
return m_bodyList;
|
||||
}
|
||||
|
||||
inline b2Joint* b2World::GetJointList()
|
||||
{
|
||||
return m_jointList;
|
||||
}
|
||||
|
||||
inline b2Contact* b2World::GetContactList()
|
||||
{
|
||||
return m_contactManager.m_contactList;
|
||||
}
|
||||
|
||||
inline int32 b2World::GetBodyCount() const
|
||||
{
|
||||
return m_bodyCount;
|
||||
}
|
||||
|
||||
inline int32 b2World::GetJointCount() const
|
||||
{
|
||||
return m_jointCount;
|
||||
}
|
||||
|
||||
inline int32 b2World::GetContactCount() const
|
||||
{
|
||||
return m_contactManager.m_contactCount;
|
||||
}
|
||||
|
||||
inline void b2World::SetGravity(const b2Vec2& gravity)
|
||||
{
|
||||
m_gravity = gravity;
|
||||
}
|
||||
|
||||
inline b2Vec2 b2World::GetGravity() const
|
||||
{
|
||||
return m_gravity;
|
||||
}
|
||||
|
||||
inline bool b2World::IsLocked() const
|
||||
{
|
||||
return (m_flags & e_locked) == e_locked;
|
||||
}
|
||||
|
||||
inline void b2World::SetAutoClearForces(bool flag)
|
||||
{
|
||||
if (flag)
|
||||
{
|
||||
m_flags |= e_clearForces;
|
||||
}
|
||||
else
|
||||
{
|
||||
m_flags &= ~e_clearForces;
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the flag that controls automatic clearing of forces after each time step.
|
||||
inline bool b2World::GetAutoClearForces() const
|
||||
{
|
||||
return (m_flags & e_clearForces) == e_clearForces;
|
||||
}
|
||||
|
||||
#endif
|
||||
61
AndEngine/jni/Box2D/Dynamics/b2WorldCallbacks.cpp
Normal file
61
AndEngine/jni/Box2D/Dynamics/b2WorldCallbacks.cpp
Normal file
@@ -0,0 +1,61 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#include "Box2D/Dynamics/b2WorldCallbacks.h"
|
||||
#include "Box2D/Dynamics/b2Fixture.h"
|
||||
|
||||
// Return true if contact calculations should be performed between these two shapes.
|
||||
// If you implement your own collision filter you may want to build from this implementation.
|
||||
bool b2ContactFilter::ShouldCollide(b2Fixture* fixtureA, b2Fixture* fixtureB)
|
||||
{
|
||||
const b2Filter& filterA = fixtureA->GetFilterData();
|
||||
const b2Filter& filterB = fixtureB->GetFilterData();
|
||||
|
||||
if (filterA.groupIndex == filterB.groupIndex && filterA.groupIndex != 0)
|
||||
{
|
||||
return filterA.groupIndex > 0;
|
||||
}
|
||||
|
||||
bool collide = (filterA.maskBits & filterB.categoryBits) != 0 && (filterA.categoryBits & filterB.maskBits) != 0;
|
||||
return collide;
|
||||
}
|
||||
|
||||
b2DebugDraw::b2DebugDraw()
|
||||
{
|
||||
m_drawFlags = 0;
|
||||
}
|
||||
|
||||
void b2DebugDraw::SetFlags(uint32 flags)
|
||||
{
|
||||
m_drawFlags = flags;
|
||||
}
|
||||
|
||||
uint32 b2DebugDraw::GetFlags() const
|
||||
{
|
||||
return m_drawFlags;
|
||||
}
|
||||
|
||||
void b2DebugDraw::AppendFlags(uint32 flags)
|
||||
{
|
||||
m_drawFlags |= flags;
|
||||
}
|
||||
|
||||
void b2DebugDraw::ClearFlags(uint32 flags)
|
||||
{
|
||||
m_drawFlags &= ~flags;
|
||||
}
|
||||
217
AndEngine/jni/Box2D/Dynamics/b2WorldCallbacks.h
Normal file
217
AndEngine/jni/Box2D/Dynamics/b2WorldCallbacks.h
Normal file
@@ -0,0 +1,217 @@
|
||||
/*
|
||||
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef B2_WORLD_CALLBACKS_H
|
||||
#define B2_WORLD_CALLBACKS_H
|
||||
|
||||
#include "Box2D/Common/b2Settings.h"
|
||||
|
||||
struct b2Vec2;
|
||||
struct b2Transform;
|
||||
class b2Fixture;
|
||||
class b2Body;
|
||||
class b2Joint;
|
||||
class b2Contact;
|
||||
struct b2ContactPoint;
|
||||
struct b2ContactResult;
|
||||
struct b2Manifold;
|
||||
|
||||
/// Joints and fixtures are destroyed when their associated
|
||||
/// body is destroyed. Implement this listener so that you
|
||||
/// may nullify references to these joints and shapes.
|
||||
class b2DestructionListener
|
||||
{
|
||||
public:
|
||||
virtual ~b2DestructionListener() {}
|
||||
|
||||
/// Called when any joint is about to be destroyed due
|
||||
/// to the destruction of one of its attached bodies.
|
||||
virtual void SayGoodbye(b2Joint* joint) = 0;
|
||||
|
||||
/// Called when any fixture is about to be destroyed due
|
||||
/// to the destruction of its parent body.
|
||||
virtual void SayGoodbye(b2Fixture* fixture) = 0;
|
||||
};
|
||||
|
||||
/// Implement this class to provide collision filtering. In other words, you can implement
|
||||
/// this class if you want finer control over contact creation.
|
||||
class b2ContactFilter
|
||||
{
|
||||
public:
|
||||
virtual ~b2ContactFilter() {}
|
||||
|
||||
/// Return true if contact calculations should be performed between these two shapes.
|
||||
/// @warning for performance reasons this is only called when the AABBs begin to overlap.
|
||||
virtual bool ShouldCollide(b2Fixture* fixtureA, b2Fixture* fixtureB);
|
||||
};
|
||||
|
||||
/// Contact impulses for reporting. Impulses are used instead of forces because
|
||||
/// sub-step forces may approach infinity for rigid body collisions. These
|
||||
/// match up one-to-one with the contact points in b2Manifold.
|
||||
struct b2ContactImpulse
|
||||
{
|
||||
float32 normalImpulses[b2_maxManifoldPoints];
|
||||
float32 tangentImpulses[b2_maxManifoldPoints];
|
||||
};
|
||||
|
||||
/// Implement this class to get contact information. You can use these results for
|
||||
/// things like sounds and game logic. You can also get contact results by
|
||||
/// traversing the contact lists after the time step. However, you might miss
|
||||
/// some contacts because continuous physics leads to sub-stepping.
|
||||
/// Additionally you may receive multiple callbacks for the same contact in a
|
||||
/// single time step.
|
||||
/// You should strive to make your callbacks efficient because there may be
|
||||
/// many callbacks per time step.
|
||||
/// @warning You cannot create/destroy Box2D entities inside these callbacks.
|
||||
class b2ContactListener
|
||||
{
|
||||
public:
|
||||
virtual ~b2ContactListener() {}
|
||||
|
||||
/// Called when two fixtures begin to touch.
|
||||
virtual void BeginContact(b2Contact* contact) { B2_NOT_USED(contact); }
|
||||
|
||||
/// Called when two fixtures cease to touch.
|
||||
virtual void EndContact(b2Contact* contact) { B2_NOT_USED(contact); }
|
||||
|
||||
/// This is called after a contact is updated. This allows you to inspect a
|
||||
/// contact before it goes to the solver. If you are careful, you can modify the
|
||||
/// contact manifold (e.g. disable contact).
|
||||
/// A copy of the old manifold is provided so that you can detect changes.
|
||||
/// Note: this is called only for awake bodies.
|
||||
/// Note: this is called even when the number of contact points is zero.
|
||||
/// Note: this is not called for sensors.
|
||||
/// Note: if you set the number of contact points to zero, you will not
|
||||
/// get an EndContact callback. However, you may get a BeginContact callback
|
||||
/// the next step.
|
||||
virtual void PreSolve(b2Contact* contact, const b2Manifold* oldManifold)
|
||||
{
|
||||
B2_NOT_USED(contact);
|
||||
B2_NOT_USED(oldManifold);
|
||||
}
|
||||
|
||||
/// This lets you inspect a contact after the solver is finished. This is useful
|
||||
/// for inspecting impulses.
|
||||
/// Note: the contact manifold does not include time of impact impulses, which can be
|
||||
/// arbitrarily large if the sub-step is small. Hence the impulse is provided explicitly
|
||||
/// in a separate data structure.
|
||||
/// Note: this is only called for contacts that are touching, solid, and awake.
|
||||
virtual void PostSolve(b2Contact* contact, const b2ContactImpulse* impulse)
|
||||
{
|
||||
B2_NOT_USED(contact);
|
||||
B2_NOT_USED(impulse);
|
||||
}
|
||||
};
|
||||
|
||||
/// Callback class for AABB queries.
|
||||
/// See b2World::Query
|
||||
class b2QueryCallback
|
||||
{
|
||||
public:
|
||||
virtual ~b2QueryCallback() {}
|
||||
|
||||
/// Called for each fixture found in the query AABB.
|
||||
/// @return false to terminate the query.
|
||||
virtual bool ReportFixture(b2Fixture* fixture) = 0;
|
||||
};
|
||||
|
||||
/// Callback class for ray casts.
|
||||
/// See b2World::RayCast
|
||||
class b2RayCastCallback
|
||||
{
|
||||
public:
|
||||
virtual ~b2RayCastCallback() {}
|
||||
|
||||
/// Called for each fixture found in the query. You control how the ray cast
|
||||
/// proceeds by returning a float:
|
||||
/// return -1: ignore this fixture and continue
|
||||
/// return 0: terminate the ray cast
|
||||
/// return fraction: clip the ray to this point
|
||||
/// return 1: don't clip the ray and continue
|
||||
/// @param fixture the fixture hit by the ray
|
||||
/// @param point the point of initial intersection
|
||||
/// @param normal the normal vector at the point of intersection
|
||||
/// @return -1 to filter, 0 to terminate, fraction to clip the ray for
|
||||
/// closest hit, 1 to continue
|
||||
virtual float32 ReportFixture( b2Fixture* fixture, const b2Vec2& point,
|
||||
const b2Vec2& normal, float32 fraction) = 0;
|
||||
};
|
||||
|
||||
/// Color for debug drawing. Each value has the range [0,1].
|
||||
struct b2Color
|
||||
{
|
||||
b2Color() {}
|
||||
b2Color(float32 r, float32 g, float32 b) : r(r), g(g), b(b) {}
|
||||
void Set(float32 ri, float32 gi, float32 bi) { r = ri; g = gi; b = bi; }
|
||||
float32 r, g, b;
|
||||
};
|
||||
|
||||
/// Implement and register this class with a b2World to provide debug drawing of physics
|
||||
/// entities in your game.
|
||||
class b2DebugDraw
|
||||
{
|
||||
public:
|
||||
b2DebugDraw();
|
||||
|
||||
virtual ~b2DebugDraw() {}
|
||||
|
||||
enum
|
||||
{
|
||||
e_shapeBit = 0x0001, ///< draw shapes
|
||||
e_jointBit = 0x0002, ///< draw joint connections
|
||||
e_aabbBit = 0x0004, ///< draw axis aligned bounding boxes
|
||||
e_pairBit = 0x0008, ///< draw broad-phase pairs
|
||||
e_centerOfMassBit = 0x0010, ///< draw center of mass frame
|
||||
};
|
||||
|
||||
/// Set the drawing flags.
|
||||
void SetFlags(uint32 flags);
|
||||
|
||||
/// Get the drawing flags.
|
||||
uint32 GetFlags() const;
|
||||
|
||||
/// Append flags to the current flags.
|
||||
void AppendFlags(uint32 flags);
|
||||
|
||||
/// Clear flags from the current flags.
|
||||
void ClearFlags(uint32 flags);
|
||||
|
||||
/// Draw a closed polygon provided in CCW order.
|
||||
virtual void DrawPolygon(const b2Vec2* vertices, int32 vertexCount, const b2Color& color) = 0;
|
||||
|
||||
/// Draw a solid closed polygon provided in CCW order.
|
||||
virtual void DrawSolidPolygon(const b2Vec2* vertices, int32 vertexCount, const b2Color& color) = 0;
|
||||
|
||||
/// Draw a circle.
|
||||
virtual void DrawCircle(const b2Vec2& center, float32 radius, const b2Color& color) = 0;
|
||||
|
||||
/// Draw a solid circle.
|
||||
virtual void DrawSolidCircle(const b2Vec2& center, float32 radius, const b2Vec2& axis, const b2Color& color) = 0;
|
||||
|
||||
/// Draw a line segment.
|
||||
virtual void DrawSegment(const b2Vec2& p1, const b2Vec2& p2, const b2Color& color) = 0;
|
||||
|
||||
/// Draw a transform. Choose your own length scale.
|
||||
/// @param xf a transform.
|
||||
virtual void DrawTransform(const b2Transform& xf) = 0;
|
||||
|
||||
protected:
|
||||
uint32 m_drawFlags;
|
||||
};
|
||||
|
||||
#endif
|
||||
Reference in New Issue
Block a user