initial commit. includes PhsyicsBox2dExtension

This commit is contained in:
warren powers
2011-07-02 16:16:50 +00:00
parent b93ab61397
commit a5d67cad19
1283 changed files with 71363 additions and 0 deletions

View File

@@ -0,0 +1,205 @@
/*
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include "Box2D/Common/b2BlockAllocator.h"
#include <stdlib.h>
#include <limits.h>
#include <string.h>
#include <memory.h>
int32 b2BlockAllocator::s_blockSizes[b2_blockSizes] =
{
16, // 0
32, // 1
64, // 2
96, // 3
128, // 4
160, // 5
192, // 6
224, // 7
256, // 8
320, // 9
384, // 10
448, // 11
512, // 12
640, // 13
};
uint8 b2BlockAllocator::s_blockSizeLookup[b2_maxBlockSize + 1];
bool b2BlockAllocator::s_blockSizeLookupInitialized;
struct b2Chunk
{
int32 blockSize;
b2Block* blocks;
};
struct b2Block
{
b2Block* next;
};
b2BlockAllocator::b2BlockAllocator()
{
b2Assert(b2_blockSizes < UCHAR_MAX);
m_chunkSpace = b2_chunkArrayIncrement;
m_chunkCount = 0;
m_chunks = (b2Chunk*)b2Alloc(m_chunkSpace * sizeof(b2Chunk));
memset(m_chunks, 0, m_chunkSpace * sizeof(b2Chunk));
memset(m_freeLists, 0, sizeof(m_freeLists));
if (s_blockSizeLookupInitialized == false)
{
int32 j = 0;
for (int32 i = 1; i <= b2_maxBlockSize; ++i)
{
b2Assert(j < b2_blockSizes);
if (i <= s_blockSizes[j])
{
s_blockSizeLookup[i] = (uint8)j;
}
else
{
++j;
s_blockSizeLookup[i] = (uint8)j;
}
}
s_blockSizeLookupInitialized = true;
}
}
b2BlockAllocator::~b2BlockAllocator()
{
for (int32 i = 0; i < m_chunkCount; ++i)
{
b2Free(m_chunks[i].blocks);
}
b2Free(m_chunks);
}
void* b2BlockAllocator::Allocate(int32 size)
{
if (size == 0)
return NULL;
b2Assert(0 < size && size <= b2_maxBlockSize);
int32 index = s_blockSizeLookup[size];
b2Assert(0 <= index && index < b2_blockSizes);
if (m_freeLists[index])
{
b2Block* block = m_freeLists[index];
m_freeLists[index] = block->next;
return block;
}
else
{
if (m_chunkCount == m_chunkSpace)
{
b2Chunk* oldChunks = m_chunks;
m_chunkSpace += b2_chunkArrayIncrement;
m_chunks = (b2Chunk*)b2Alloc(m_chunkSpace * sizeof(b2Chunk));
memcpy(m_chunks, oldChunks, m_chunkCount * sizeof(b2Chunk));
memset(m_chunks + m_chunkCount, 0, b2_chunkArrayIncrement * sizeof(b2Chunk));
b2Free(oldChunks);
}
b2Chunk* chunk = m_chunks + m_chunkCount;
chunk->blocks = (b2Block*)b2Alloc(b2_chunkSize);
#if defined(_DEBUG)
memset(chunk->blocks, 0xcd, b2_chunkSize);
#endif
int32 blockSize = s_blockSizes[index];
chunk->blockSize = blockSize;
int32 blockCount = b2_chunkSize / blockSize;
b2Assert(blockCount * blockSize <= b2_chunkSize);
for (int32 i = 0; i < blockCount - 1; ++i)
{
b2Block* block = (b2Block*)((int8*)chunk->blocks + blockSize * i);
b2Block* next = (b2Block*)((int8*)chunk->blocks + blockSize * (i + 1));
block->next = next;
}
b2Block* last = (b2Block*)((int8*)chunk->blocks + blockSize * (blockCount - 1));
last->next = NULL;
m_freeLists[index] = chunk->blocks->next;
++m_chunkCount;
return chunk->blocks;
}
}
void b2BlockAllocator::Free(void* p, int32 size)
{
if (size == 0)
{
return;
}
b2Assert(0 < size && size <= b2_maxBlockSize);
int32 index = s_blockSizeLookup[size];
b2Assert(0 <= index && index < b2_blockSizes);
#ifdef _DEBUG
// Verify the memory address and size is valid.
int32 blockSize = s_blockSizes[index];
bool found = false;
for (int32 i = 0; i < m_chunkCount; ++i)
{
b2Chunk* chunk = m_chunks + i;
if (chunk->blockSize != blockSize)
{
b2Assert( (int8*)p + blockSize <= (int8*)chunk->blocks ||
(int8*)chunk->blocks + b2_chunkSize <= (int8*)p);
}
else
{
if ((int8*)chunk->blocks <= (int8*)p && (int8*)p + blockSize <= (int8*)chunk->blocks + b2_chunkSize)
{
found = true;
}
}
}
b2Assert(found);
memset(p, 0xfd, blockSize);
#endif
b2Block* block = (b2Block*)p;
block->next = m_freeLists[index];
m_freeLists[index] = block;
}
void b2BlockAllocator::Clear()
{
for (int32 i = 0; i < m_chunkCount; ++i)
{
b2Free(m_chunks[i].blocks);
}
m_chunkCount = 0;
memset(m_chunks, 0, m_chunkSpace * sizeof(b2Chunk));
memset(m_freeLists, 0, sizeof(m_freeLists));
}

View File

@@ -0,0 +1,59 @@
/*
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B2_BLOCK_ALLOCATOR_H
#define B2_BLOCK_ALLOCATOR_H
#include "Box2D/Common/b2Settings.h"
const int32 b2_chunkSize = 4096;
const int32 b2_maxBlockSize = 640;
const int32 b2_blockSizes = 14;
const int32 b2_chunkArrayIncrement = 128;
struct b2Block;
struct b2Chunk;
// This is a small object allocator used for allocating small
// objects that persist for more than one time step.
// See: http://www.codeproject.com/useritems/Small_Block_Allocator.asp
class b2BlockAllocator
{
public:
b2BlockAllocator();
~b2BlockAllocator();
void* Allocate(int32 size);
void Free(void* p, int32 size);
void Clear();
private:
b2Chunk* m_chunks;
int32 m_chunkCount;
int32 m_chunkSpace;
b2Block* m_freeLists[b2_blockSizes];
static int32 s_blockSizes[b2_blockSizes];
static uint8 s_blockSizeLookup[b2_maxBlockSize + 1];
static bool s_blockSizeLookupInitialized;
};
#endif

View File

@@ -0,0 +1,55 @@
/*
* Copyright (c) 2007-2009 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include "Box2D/Common/b2Math.h"
const b2Vec2 b2Vec2_zero(0.0f, 0.0f);
const b2Mat22 b2Mat22_identity(1.0f, 0.0f, 0.0f, 1.0f);
const b2Transform b2Transform_identity(b2Vec2_zero, b2Mat22_identity);
/// Solve A * x = b, where b is a column vector. This is more efficient
/// than computing the inverse in one-shot cases.
b2Vec3 b2Mat33::Solve33(const b2Vec3& b) const
{
float32 det = b2Dot(col1, b2Cross(col2, col3));
if (det != 0.0f)
{
det = 1.0f / det;
}
b2Vec3 x;
x.x = det * b2Dot(b, b2Cross(col2, col3));
x.y = det * b2Dot(col1, b2Cross(b, col3));
x.z = det * b2Dot(col1, b2Cross(col2, b));
return x;
}
/// Solve A * x = b, where b is a column vector. This is more efficient
/// than computing the inverse in one-shot cases.
b2Vec2 b2Mat33::Solve22(const b2Vec2& b) const
{
float32 a11 = col1.x, a12 = col2.x, a21 = col1.y, a22 = col2.y;
float32 det = a11 * a22 - a12 * a21;
if (det != 0.0f)
{
det = 1.0f / det;
}
b2Vec2 x;
x.x = det * (a22 * b.x - a12 * b.y);
x.y = det * (a11 * b.y - a21 * b.x);
return x;
}

View File

@@ -0,0 +1,623 @@
/*
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B2_MATH_H
#define B2_MATH_H
#include "Box2D/Common/b2Settings.h"
#include <math.h>
#include <float.h>
#include <stddef.h>
#include <limits.h>
/// This function is used to ensure that a floating point number is
/// not a NaN or infinity.
inline bool b2IsValid(float32 x)
{
if (x != x)
{
// NaN.
return false;
}
return true;
}
/// This is a approximate yet fast inverse square-root.
inline float32 b2InvSqrt(float32 x)
{
union
{
float32 x;
int32 i;
} convert;
convert.x = x;
float32 xhalf = 0.5f * x;
convert.i = 0x5f3759df - (convert.i >> 1);
x = convert.x;
x = x * (1.5f - xhalf * x * x);
return x;
}
#define b2Sqrt(x) sqrtf(x)
#define b2Atan2(y, x) atan2f(y, x)
inline float32 b2Abs(float32 a)
{
return a > 0.0f ? a : -a;
}
/// A 2D column vector.
struct b2Vec2
{
/// Default constructor does nothing (for performance).
b2Vec2() {}
/// Construct using coordinates.
b2Vec2(float32 x, float32 y) : x(x), y(y) {}
/// Set this vector to all zeros.
void SetZero() { x = 0.0f; y = 0.0f; }
/// Set this vector to some specified coordinates.
void Set(float32 x_, float32 y_) { x = x_; y = y_; }
/// Negate this vector.
b2Vec2 operator -() const { b2Vec2 v; v.Set(-x, -y); return v; }
/// Read from and indexed element.
float32 operator () (int32 i) const
{
return (&x)[i];
}
/// Write to an indexed element.
float32& operator () (int32 i)
{
return (&x)[i];
}
/// Add a vector to this vector.
void operator += (const b2Vec2& v)
{
x += v.x; y += v.y;
}
/// Subtract a vector from this vector.
void operator -= (const b2Vec2& v)
{
x -= v.x; y -= v.y;
}
/// Multiply this vector by a scalar.
void operator *= (float32 a)
{
x *= a; y *= a;
}
/// Get the length of this vector (the norm).
float32 Length() const
{
return b2Sqrt(x * x + y * y);
}
/// Get the length squared. For performance, use this instead of
/// b2Vec2::Length (if possible).
float32 LengthSquared() const
{
return x * x + y * y;
}
/// Convert this vector into a unit vector. Returns the length.
float32 Normalize()
{
float32 length = Length();
if (length < b2_epsilon)
{
return 0.0f;
}
float32 invLength = 1.0f / length;
x *= invLength;
y *= invLength;
return length;
}
/// Does this vector contain finite coordinates?
bool IsValid() const
{
return b2IsValid(x) && b2IsValid(y);
}
float32 x, y;
};
/// A 2D column vector with 3 elements.
struct b2Vec3
{
/// Default constructor does nothing (for performance).
b2Vec3() {}
/// Construct using coordinates.
b2Vec3(float32 x, float32 y, float32 z) : x(x), y(y), z(z) {}
/// Set this vector to all zeros.
void SetZero() { x = 0.0f; y = 0.0f; z = 0.0f; }
/// Set this vector to some specified coordinates.
void Set(float32 x_, float32 y_, float32 z_) { x = x_; y = y_; z = z_; }
/// Negate this vector.
b2Vec3 operator -() const { b2Vec3 v; v.Set(-x, -y, -z); return v; }
/// Add a vector to this vector.
void operator += (const b2Vec3& v)
{
x += v.x; y += v.y; z += v.z;
}
/// Subtract a vector from this vector.
void operator -= (const b2Vec3& v)
{
x -= v.x; y -= v.y; z -= v.z;
}
/// Multiply this vector by a scalar.
void operator *= (float32 s)
{
x *= s; y *= s; z *= s;
}
float32 x, y, z;
};
/// A 2-by-2 matrix. Stored in column-major order.
struct b2Mat22
{
/// The default constructor does nothing (for performance).
b2Mat22() {}
/// Construct this matrix using columns.
b2Mat22(const b2Vec2& c1, const b2Vec2& c2)
{
col1 = c1;
col2 = c2;
}
/// Construct this matrix using scalars.
b2Mat22(float32 a11, float32 a12, float32 a21, float32 a22)
{
col1.x = a11; col1.y = a21;
col2.x = a12; col2.y = a22;
}
/// Construct this matrix using an angle. This matrix becomes
/// an orthonormal rotation matrix.
explicit b2Mat22(float32 angle)
{
// TODO_ERIN compute sin+cos together.
float32 c = cosf(angle), s = sinf(angle);
col1.x = c; col2.x = -s;
col1.y = s; col2.y = c;
}
/// Initialize this matrix using columns.
void Set(const b2Vec2& c1, const b2Vec2& c2)
{
col1 = c1;
col2 = c2;
}
/// Initialize this matrix using an angle. This matrix becomes
/// an orthonormal rotation matrix.
void Set(float32 angle)
{
float32 c = cosf(angle), s = sinf(angle);
col1.x = c; col2.x = -s;
col1.y = s; col2.y = c;
}
/// Set this to the identity matrix.
void SetIdentity()
{
col1.x = 1.0f; col2.x = 0.0f;
col1.y = 0.0f; col2.y = 1.0f;
}
/// Set this matrix to all zeros.
void SetZero()
{
col1.x = 0.0f; col2.x = 0.0f;
col1.y = 0.0f; col2.y = 0.0f;
}
/// Extract the angle from this matrix (assumed to be
/// a rotation matrix).
float32 GetAngle() const
{
return b2Atan2(col1.y, col1.x);
}
b2Mat22 GetInverse() const
{
float32 a = col1.x, b = col2.x, c = col1.y, d = col2.y;
b2Mat22 B;
float32 det = a * d - b * c;
if (det != 0.0f)
{
det = 1.0f / det;
}
B.col1.x = det * d; B.col2.x = -det * b;
B.col1.y = -det * c; B.col2.y = det * a;
return B;
}
/// Solve A * x = b, where b is a column vector. This is more efficient
/// than computing the inverse in one-shot cases.
b2Vec2 Solve(const b2Vec2& b) const
{
float32 a11 = col1.x, a12 = col2.x, a21 = col1.y, a22 = col2.y;
float32 det = a11 * a22 - a12 * a21;
if (det != 0.0f)
{
det = 1.0f / det;
}
b2Vec2 x;
x.x = det * (a22 * b.x - a12 * b.y);
x.y = det * (a11 * b.y - a21 * b.x);
return x;
}
b2Vec2 col1, col2;
};
/// A 3-by-3 matrix. Stored in column-major order.
struct b2Mat33
{
/// The default constructor does nothing (for performance).
b2Mat33() {}
/// Construct this matrix using columns.
b2Mat33(const b2Vec3& c1, const b2Vec3& c2, const b2Vec3& c3)
{
col1 = c1;
col2 = c2;
col3 = c3;
}
/// Set this matrix to all zeros.
void SetZero()
{
col1.SetZero();
col2.SetZero();
col3.SetZero();
}
/// Solve A * x = b, where b is a column vector. This is more efficient
/// than computing the inverse in one-shot cases.
b2Vec3 Solve33(const b2Vec3& b) const;
/// Solve A * x = b, where b is a column vector. This is more efficient
/// than computing the inverse in one-shot cases. Solve only the upper
/// 2-by-2 matrix equation.
b2Vec2 Solve22(const b2Vec2& b) const;
b2Vec3 col1, col2, col3;
};
/// A transform contains translation and rotation. It is used to represent
/// the position and orientation of rigid frames.
struct b2Transform
{
/// The default constructor does nothing (for performance).
b2Transform() {}
/// Initialize using a position vector and a rotation matrix.
b2Transform(const b2Vec2& position, const b2Mat22& R) : position(position), R(R) {}
/// Set this to the identity transform.
void SetIdentity()
{
position.SetZero();
R.SetIdentity();
}
/// Set this based on the position and angle.
void Set(const b2Vec2& p, float32 angle)
{
position = p;
R.Set(angle);
}
/// Calculate the angle that the rotation matrix represents.
float32 GetAngle() const
{
return b2Atan2(R.col1.y, R.col1.x);
}
b2Vec2 position;
b2Mat22 R;
};
/// This describes the motion of a body/shape for TOI computation.
/// Shapes are defined with respect to the body origin, which may
/// no coincide with the center of mass. However, to support dynamics
/// we must interpolate the center of mass position.
struct b2Sweep
{
/// Get the interpolated transform at a specific time.
/// @param alpha is a factor in [0,1], where 0 indicates t0.
void GetTransform(b2Transform* xf, float32 alpha) const;
/// Advance the sweep forward, yielding a new initial state.
/// @param t the new initial time.
void Advance(float32 t);
/// Normalize the angles.
void Normalize();
b2Vec2 localCenter; ///< local center of mass position
b2Vec2 c0, c; ///< center world positions
float32 a0, a; ///< world angles
};
extern const b2Vec2 b2Vec2_zero;
extern const b2Mat22 b2Mat22_identity;
extern const b2Transform b2Transform_identity;
/// Perform the dot product on two vectors.
inline float32 b2Dot(const b2Vec2& a, const b2Vec2& b)
{
return a.x * b.x + a.y * b.y;
}
/// Perform the cross product on two vectors. In 2D this produces a scalar.
inline float32 b2Cross(const b2Vec2& a, const b2Vec2& b)
{
return a.x * b.y - a.y * b.x;
}
/// Perform the cross product on a vector and a scalar. In 2D this produces
/// a vector.
inline b2Vec2 b2Cross(const b2Vec2& a, float32 s)
{
return b2Vec2(s * a.y, -s * a.x);
}
/// Perform the cross product on a scalar and a vector. In 2D this produces
/// a vector.
inline b2Vec2 b2Cross(float32 s, const b2Vec2& a)
{
return b2Vec2(-s * a.y, s * a.x);
}
/// Multiply a matrix times a vector. If a rotation matrix is provided,
/// then this transforms the vector from one frame to another.
inline b2Vec2 b2Mul(const b2Mat22& A, const b2Vec2& v)
{
return b2Vec2(A.col1.x * v.x + A.col2.x * v.y, A.col1.y * v.x + A.col2.y * v.y);
}
/// Multiply a matrix transpose times a vector. If a rotation matrix is provided,
/// then this transforms the vector from one frame to another (inverse transform).
inline b2Vec2 b2MulT(const b2Mat22& A, const b2Vec2& v)
{
return b2Vec2(b2Dot(v, A.col1), b2Dot(v, A.col2));
}
/// Add two vectors component-wise.
inline b2Vec2 operator + (const b2Vec2& a, const b2Vec2& b)
{
return b2Vec2(a.x + b.x, a.y + b.y);
}
/// Subtract two vectors component-wise.
inline b2Vec2 operator - (const b2Vec2& a, const b2Vec2& b)
{
return b2Vec2(a.x - b.x, a.y - b.y);
}
inline b2Vec2 operator * (float32 s, const b2Vec2& a)
{
return b2Vec2(s * a.x, s * a.y);
}
inline bool operator == (const b2Vec2& a, const b2Vec2& b)
{
return a.x == b.x && a.y == b.y;
}
inline float32 b2Distance(const b2Vec2& a, const b2Vec2& b)
{
b2Vec2 c = a - b;
return c.Length();
}
inline float32 b2DistanceSquared(const b2Vec2& a, const b2Vec2& b)
{
b2Vec2 c = a - b;
return b2Dot(c, c);
}
inline b2Vec3 operator * (float32 s, const b2Vec3& a)
{
return b2Vec3(s * a.x, s * a.y, s * a.z);
}
/// Add two vectors component-wise.
inline b2Vec3 operator + (const b2Vec3& a, const b2Vec3& b)
{
return b2Vec3(a.x + b.x, a.y + b.y, a.z + b.z);
}
/// Subtract two vectors component-wise.
inline b2Vec3 operator - (const b2Vec3& a, const b2Vec3& b)
{
return b2Vec3(a.x - b.x, a.y - b.y, a.z - b.z);
}
/// Perform the dot product on two vectors.
inline float32 b2Dot(const b2Vec3& a, const b2Vec3& b)
{
return a.x * b.x + a.y * b.y + a.z * b.z;
}
/// Perform the cross product on two vectors.
inline b2Vec3 b2Cross(const b2Vec3& a, const b2Vec3& b)
{
return b2Vec3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
}
inline b2Mat22 operator + (const b2Mat22& A, const b2Mat22& B)
{
return b2Mat22(A.col1 + B.col1, A.col2 + B.col2);
}
// A * B
inline b2Mat22 b2Mul(const b2Mat22& A, const b2Mat22& B)
{
return b2Mat22(b2Mul(A, B.col1), b2Mul(A, B.col2));
}
// A^T * B
inline b2Mat22 b2MulT(const b2Mat22& A, const b2Mat22& B)
{
b2Vec2 c1(b2Dot(A.col1, B.col1), b2Dot(A.col2, B.col1));
b2Vec2 c2(b2Dot(A.col1, B.col2), b2Dot(A.col2, B.col2));
return b2Mat22(c1, c2);
}
/// Multiply a matrix times a vector.
inline b2Vec3 b2Mul(const b2Mat33& A, const b2Vec3& v)
{
return v.x * A.col1 + v.y * A.col2 + v.z * A.col3;
}
inline b2Vec2 b2Mul(const b2Transform& T, const b2Vec2& v)
{
float32 x = T.position.x + T.R.col1.x * v.x + T.R.col2.x * v.y;
float32 y = T.position.y + T.R.col1.y * v.x + T.R.col2.y * v.y;
return b2Vec2(x, y);
}
inline b2Vec2 b2MulT(const b2Transform& T, const b2Vec2& v)
{
return b2MulT(T.R, v - T.position);
}
inline b2Vec2 b2Abs(const b2Vec2& a)
{
return b2Vec2(b2Abs(a.x), b2Abs(a.y));
}
inline b2Mat22 b2Abs(const b2Mat22& A)
{
return b2Mat22(b2Abs(A.col1), b2Abs(A.col2));
}
template <typename T>
inline T b2Min(T a, T b)
{
return a < b ? a : b;
}
inline b2Vec2 b2Min(const b2Vec2& a, const b2Vec2& b)
{
return b2Vec2(b2Min(a.x, b.x), b2Min(a.y, b.y));
}
template <typename T>
inline T b2Max(T a, T b)
{
return a > b ? a : b;
}
inline b2Vec2 b2Max(const b2Vec2& a, const b2Vec2& b)
{
return b2Vec2(b2Max(a.x, b.x), b2Max(a.y, b.y));
}
template <typename T>
inline T b2Clamp(T a, T low, T high)
{
return b2Max(low, b2Min(a, high));
}
inline b2Vec2 b2Clamp(const b2Vec2& a, const b2Vec2& low, const b2Vec2& high)
{
return b2Max(low, b2Min(a, high));
}
template<typename T> inline void b2Swap(T& a, T& b)
{
T tmp = a;
a = b;
b = tmp;
}
/// "Next Largest Power of 2
/// Given a binary integer value x, the next largest power of 2 can be computed by a SWAR algorithm
/// that recursively "folds" the upper bits into the lower bits. This process yields a bit vector with
/// the same most significant 1 as x, but all 1's below it. Adding 1 to that value yields the next
/// largest power of 2. For a 32-bit value:"
inline uint32 b2NextPowerOfTwo(uint32 x)
{
x |= (x >> 1);
x |= (x >> 2);
x |= (x >> 4);
x |= (x >> 8);
x |= (x >> 16);
return x + 1;
}
inline bool b2IsPowerOfTwo(uint32 x)
{
bool result = x > 0 && (x & (x - 1)) == 0;
return result;
}
inline void b2Sweep::GetTransform(b2Transform* xf, float32 alpha) const
{
xf->position = (1.0f - alpha) * c0 + alpha * c;
float32 angle = (1.0f - alpha) * a0 + alpha * a;
xf->R.Set(angle);
// Shift to origin
xf->position -= b2Mul(xf->R, localCenter);
}
inline void b2Sweep::Advance(float32 t)
{
c0 = (1.0f - t) * c0 + t * c;
a0 = (1.0f - t) * a0 + t * a;
}
/// Normalize an angle in radians to be between -pi and pi
inline void b2Sweep::Normalize()
{
float32 twoPi = 2.0f * b2_pi;
float32 d = twoPi * floorf(a0 / twoPi);
a0 -= d;
a -= d;
}
#endif

View File

@@ -0,0 +1,33 @@
/*
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include "Box2D/Common/b2Settings.h"
#include <stdlib.h>
b2Version b2_version = {2, 1, 2};
// Memory allocators. Modify these to use your own allocator.
void* b2Alloc(int32 size)
{
return malloc(size);
}
void b2Free(void* mem)
{
free(mem);
}

View File

@@ -0,0 +1,151 @@
/*
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B2_SETTINGS_H
#define B2_SETTINGS_H
#include <assert.h>
#include <math.h>
#define B2_NOT_USED(x) ((void)(x))
#define b2Assert(A) assert(A)
typedef signed char int8;
typedef signed short int16;
typedef signed int int32;
typedef unsigned char uint8;
typedef unsigned short uint16;
typedef unsigned int uint32;
typedef float float32;
#define b2_maxFloat FLT_MAX
#define b2_epsilon FLT_EPSILON
#define b2_pi 3.14159265359f
/// @file
/// Global tuning constants based on meters-kilograms-seconds (MKS) units.
///
// Collision
/// The maximum number of contact points between two convex shapes.
#define b2_maxManifoldPoints 2
/// The maximum number of vertices on a convex polygon.
#define b2_maxPolygonVertices 8
/// This is used to fatten AABBs in the dynamic tree. This allows proxies
/// to move by a small amount without triggering a tree adjustment.
/// This is in meters.
#define b2_aabbExtension 0.1f
/// This is used to fatten AABBs in the dynamic tree. This is used to predict
/// the future position based on the current displacement.
/// This is a dimensionless multiplier.
#define b2_aabbMultiplier 2.0f
/// A small length used as a collision and constraint tolerance. Usually it is
/// chosen to be numerically significant, but visually insignificant.
#define b2_linearSlop 0.005f
/// A small angle used as a collision and constraint tolerance. Usually it is
/// chosen to be numerically significant, but visually insignificant.
#define b2_angularSlop (2.0f / 180.0f * b2_pi)
/// The radius of the polygon/edge shape skin. This should not be modified. Making
/// this smaller means polygons will have an insufficient buffer for continuous collision.
/// Making it larger may create artifacts for vertex collision.
#define b2_polygonRadius (2.0f * b2_linearSlop)
// Dynamics
/// Maximum number of contacts to be handled to solve a TOI impact.
#define b2_maxTOIContacts 32
/// A velocity threshold for elastic collisions. Any collision with a relative linear
/// velocity below this threshold will be treated as inelastic.
#define b2_velocityThreshold 1.0f
/// The maximum linear position correction used when solving constraints. This helps to
/// prevent overshoot.
#define b2_maxLinearCorrection 0.2f
/// The maximum angular position correction used when solving constraints. This helps to
/// prevent overshoot.
#define b2_maxAngularCorrection (8.0f / 180.0f * b2_pi)
/// The maximum linear velocity of a body. This limit is very large and is used
/// to prevent numerical problems. You shouldn't need to adjust this.
#define b2_maxTranslation 2.0f
#define b2_maxTranslationSquared (b2_maxTranslation * b2_maxTranslation)
/// The maximum angular velocity of a body. This limit is very large and is used
/// to prevent numerical problems. You shouldn't need to adjust this.
#define b2_maxRotation (0.5f * b2_pi)
#define b2_maxRotationSquared (b2_maxRotation * b2_maxRotation)
/// This scale factor controls how fast overlap is resolved. Ideally this would be 1 so
/// that overlap is removed in one time step. However using values close to 1 often lead
/// to overshoot.
#define b2_contactBaumgarte 0.2f
// Sleep
/// The time that a body must be still before it will go to sleep.
#define b2_timeToSleep 0.5f
/// A body cannot sleep if its linear velocity is above this tolerance.
#define b2_linearSleepTolerance 0.01f
/// A body cannot sleep if its angular velocity is above this tolerance.
#define b2_angularSleepTolerance (2.0f / 180.0f * b2_pi)
// Memory Allocation
/// Implement this function to use your own memory allocator.
void* b2Alloc(int32 size);
/// If you implement b2Alloc, you should also implement this function.
void b2Free(void* mem);
/// Version numbering scheme.
/// See http://en.wikipedia.org/wiki/Software_versioning
struct b2Version
{
int32 major; ///< significant changes
int32 minor; ///< incremental changes
int32 revision; ///< bug fixes
};
/// Current version.
extern b2Version b2_version;
/// Friction mixing law. Feel free to customize this.
inline float32 b2MixFriction(float32 friction1, float32 friction2)
{
return sqrtf(friction1 * friction2);
}
/// Restitution mixing law. Feel free to customize this.
inline float32 b2MixRestitution(float32 restitution1, float32 restitution2)
{
return restitution1 > restitution2 ? restitution1 : restitution2;
}
#endif

View File

@@ -0,0 +1,83 @@
/*
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include "Box2D/Common/b2StackAllocator.h"
#include "Box2D/Common/b2Math.h"
b2StackAllocator::b2StackAllocator()
{
m_index = 0;
m_allocation = 0;
m_maxAllocation = 0;
m_entryCount = 0;
}
b2StackAllocator::~b2StackAllocator()
{
b2Assert(m_index == 0);
b2Assert(m_entryCount == 0);
}
void* b2StackAllocator::Allocate(int32 size)
{
b2Assert(m_entryCount < b2_maxStackEntries);
b2StackEntry* entry = m_entries + m_entryCount;
entry->size = size;
if (m_index + size > b2_stackSize)
{
entry->data = (char*)b2Alloc(size);
entry->usedMalloc = true;
}
else
{
entry->data = m_data + m_index;
entry->usedMalloc = false;
m_index += size;
}
m_allocation += size;
m_maxAllocation = b2Max(m_maxAllocation, m_allocation);
++m_entryCount;
return entry->data;
}
void b2StackAllocator::Free(void* p)
{
b2Assert(m_entryCount > 0);
b2StackEntry* entry = m_entries + m_entryCount - 1;
b2Assert(p == entry->data);
if (entry->usedMalloc)
{
b2Free(p);
}
else
{
m_index -= entry->size;
}
m_allocation -= entry->size;
--m_entryCount;
p = NULL;
}
int32 b2StackAllocator::GetMaxAllocation() const
{
return m_maxAllocation;
}

View File

@@ -0,0 +1,60 @@
/*
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B2_STACK_ALLOCATOR_H
#define B2_STACK_ALLOCATOR_H
#include "Box2D/Common/b2Settings.h"
const int32 b2_stackSize = 100 * 1024; // 100k
const int32 b2_maxStackEntries = 32;
struct b2StackEntry
{
char* data;
int32 size;
bool usedMalloc;
};
// This is a stack allocator used for fast per step allocations.
// You must nest allocate/free pairs. The code will assert
// if you try to interleave multiple allocate/free pairs.
class b2StackAllocator
{
public:
b2StackAllocator();
~b2StackAllocator();
void* Allocate(int32 size);
void Free(void* p);
int32 GetMaxAllocation() const;
private:
char m_data[b2_stackSize];
int32 m_index;
int32 m_allocation;
int32 m_maxAllocation;
b2StackEntry m_entries[b2_maxStackEntries];
int32 m_entryCount;
};
#endif